
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Machine Learning Methodologies for
Airfare Prediction

Supervisors

Prof. Alessandro ALIBERTI

Prof. Edoardo PATTI

Candidate

Xin YAO

October 2022

Abstract

With the booming tourism industry, more and more people are choosing airplanes
as a means of transportation for long-distance travel. Accurate low-price forecasting
of air tickets helps the aviation industry to match demand and supply flexibly
and make full use of aviation resources. Airline companies use dynamic pricing
strategies to determine the price of airline tickets to maximize profits when selling
airline tickets. Passengers who choose airplanes as a means of transportation want
to purchase tickets at the lowest selling price for the flight of their choice. However,
airline tickets are a special commodity that is time-sensitive and scarce, and the
price of airline tickets is affected by various factors, such as the departure time
of the plane, the number of hours of advance purchase, and the airline flight, so
it is difficult for consumers to know the best time to buy a ticket. Deep learning
algorithms have made great achievements in various fields in recent years, however,
most prior work on airfare prediction problems is based on traditional machine
learning methods, thus the performance of deep learning on this problem remains
unclear. In this thesis, we did a systematic comparison of various traditional
machine learning methods (i.e., Ridge Regression, Lasso Regression, K-Nearest
Neighbor, Decision Tree, XGBoost, Random Forest) and deep learning methods
(e.g., Fully Connected Networks, Convolutional Neural Networks, Transformer)
on the problem of airfare prediction. Inspired by the observation that ensemble
models like XGBoost and Random Forest achieve better performance than other
traditional machine learning methods, we proposed a Bayesian neural network for
airfare prediction, which is the first method that utilizes Bayesian Inference for the
airfare prediction task. We evaluate the performance of different methods on an
open dataset of 10,683 domestic routes in India from March 2019 to June 2019.
The experimental results show that deep learning-based methods achieve better
results than traditional methods in RMSE and R2, while Bayesian neural networks
can achieve better performance than other machine learning methods.

Keywords: Airfare prediction, Regression, Machine Learning, Deep Learning,
Bayesian Neural Network

i

Acknowledgements

I would like to convey my deep appreciation to my thesis advisors Prof. Alessandro
Aliberti and Prof. Edoardo Patti for their constant guidance and encouragement
throughout the thesis, and for always steering me in the right direction. I would
like to express my sincerest appreciation to my friends and family for their endless
support and encouragement in my life. And to Jiaxi, for always being by my side.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 2

2 Related Work 4

3 Methods 9
3.1 Machine Learning for Regression 9

3.1.1 Ridge Regression . 9
3.1.2 Lasso Regression . 14
3.1.3 K-Nearest Neighbors . 15
3.1.4 Support Vector Regression 19
3.1.5 XGBoost . 23
3.1.6 Decision Tree . 24
3.1.7 Random Forest Regression 30

3.2 Deep Neural Network . 35
3.2.1 Fully Connected Neural Network 40
3.2.2 Convolutional Neural Network 42
3.2.3 Transformer . 45
3.2.4 Beyesian Neural Network . 48

4 Experiments 53
4.1 Dataset . 53

4.1.1 Flight Price Dataset . 53
4.1.2 Preprocessing . 54

4.2 Evaluation Metrics . 55

iv

4.2.1 Root mean square error . 55
4.2.2 Mean absolute error . 57
4.2.3 Mean absolute percentage error 57
4.2.4 Coefficient of determination R2 58

4.3 Implementation Details . 59
4.4 Experimental Results . 60

4.4.1 Comparison of different methods 60
4.4.2 Ablation studies . 61
4.4.3 Running time comparisons 61

5 Conclusions 63

v

List of Tables

3.1 Parameters table . 12

4.1 An example of data information in our adopted flight ticket dataset. 54
4.2 An example of the data information after preprocessing. 55
4.3 Comparison of different methods on RMSE, MAE, MAPE, and R2.

The best two results are highlighted in red and blue. 60
4.4 Ablation studies on input features. We give the RMSE and MAE

results of Random Forest and Convolutional Neural Network. 62
4.5 The running time comparison of different machine learning methods. 62
4.6 The comparisons of running time, MACs, and number of parameters

of different deep learning methods. 62

vi

List of Figures

3.1 Ridge regression . 10
3.2 Bias . 11
3.3 Overview of the parameter selection and model assessment proce-

dures using GridSearchCV . 12
3.4 Geometrical description of KNN . 17
3.5 Possible hyperplanes . 19
3.6 Hyperplanes in 2D and 3D feature space 20
3.7 Different sizes of margin . 20
3.8 The working mechanism of the decision tree 25
3.9 The elements in a decision tree . 28
3.10 Steps to build a random forest . 31
3.11 The structure of a perceptron . 36
3.12 Geometric representation of the RELU function 37
3.13 Geometric representation of the sigmoid function 37
3.14 The structure of a perceptron with bias 38
3.15 The impact of bias . 38
3.16 An MLP with two input values, 2 hidden layers, and an output of a

single value . 39
3.17 Fully Connected Neural Network 40
3.18 The working mechanism of a Fully Connected Neural Network . . . 42
3.19 Fully Connected Neural Network 42
3.20 The composition of convolutional neural network 43
3.21 The working mechanism of a kernel 44
3.22 Convolutional Neural Network . 45
3.23 Architecture of a Transformer model. 46
3.24 Multi-Head Attention . 47
3.25 Differences between Artificial neural network and Bayesian neural

network . 49
3.26 Bayesian Fully Connected Neural Network 51
3.27 Bayesian Convolutional Neural Network 52

vii

4.1 The geometrical meaning of residuals. 56
4.2 An illustration of the coefficient of determination R2. 59

viii

Chapter 1

Introduction

1.1 Motivation

As the world economy has expanded and the aviation sector has rapidly developed,
more and more regular people are choosing to travel by plane. Technical research
in the area of civil aviation has been encouraged by the industry’s quick expansion
and the rise in passenger traffic.

The airline sector is one of those that use sophisticated pricing techniques, and
even adjacent seats in the same service class may be marketed at wildly different
costs for tickets on the same aircraft. This is so that airlines may optimize their
earnings using a variety of intricate pricing schemes in the yield management
system. In order to meet demand, airlines are also working to set up fair flight
schedules. Airlines have focused their efforts recently on research that includes
demand forecasting and pricing discrimination. As a result, even though the growth
of the Internet today has made it possible for consumers to access more useful
information, airlines can still create information asymmetry by keeping useful
information like the number of available seats a trade secret and adjusting ticket
prices on the fly to maximize profits. Airline search volume is crucial information
for airlines as well as significant information for pricing and scheduling flights.
The prediction service may incur significant computational costs and overhead if
it is used too frequently. Therefore, creating an appropriate prediction service
invocation approach is a critical issue that must be resolved. However, there are
few research on this topic, and applications involving power systems have had
comparable issues. However, these techniques cannot be effectively implemented in
this issue situation due to the specificity of data in the sector of airline tickets.

Even while airlines have developed their theoretical understanding of air ticket

1

Introduction

pricing and revenue management, there is still a dearth of research on customer
purchase behavior. There are principally two causes for this: The first is that most
airlines do not publicly publish their pricing methods since airline ticket pricing
techniques are very sensitive business information. Second, many models can only
be trained using partial pricing data downloaded from the Internet via crawler
programs since there aren’t enough publicly accessible datasets for academics to
test their hypotheses on. In an effort to provide customers with better buying
tactics, several recent research has put forth some suggestions based on scant data.
From the standpoint of forecasting ticket costs, this research manually constructed
regression models. They also employed techniques that specifically target the day
the cheap price first shows. The little amount of training data, however, prevent
these tactics from generalizing well, and the suggested techniques cannot be used
in practical situations. Predicting the price of an airline ticket is a common time
series prediction issue, but because the data is unique, the model is prone to error.
Additionally, because there are several factors that impact airline ticket costs, it is
essential to create a flawless model.

1.2 Contributions
The main contributions of this thesis are:
(1) We did a systematic comparison of traditional machine learning methods and
deep learning methods on the problem of airfare prediction.
(2) Inspired by the observation that ensemble models like XGBoost and Random
Forest achieve better performance than other traditional machine learning methods,
We propose a novel Bayesian airfare prediction network, which learns the data
distribution from the training data and utilize the ensemble idea to boost the
performance.
(3) We demonstrate the superior performance of the proposed Bayesian airfare
prediction network on a public dataset.

1.3 Thesis Organization
The thesis is organized as follows:

• Chapter 1 introduces the background, motivation, goals, and contributions of
the thesis.

• Chapter 2 will summarize the previous work on the topic of airfare prediction.

• Chapter 3 will introduce the traditional machine learning methods and recent
popular deep learning methods we adopt in our thesis.

2

Introduction

• Chapter 4 will show the dataset, experimental details, and results.

• Chapter 5 will give concluding remarks, summarize the major contributions of
our work, and present the future outlooks.

3

Chapter 2

Related Work

In recent years, different forecasting methods have been proposed for air ticket price
forecasting. In this part, some related work in machine learning will be introduced,
as artificial intelligence has flourished, which inspired the idea of this article. In
this chapter, we first present the various previous types of studies that are related
to our study topic. Secondly, we will present the regression methods which have
been used in previous studies and give a brief review of the disadvantages of current
models in this problem.

By utilizing openly accessible datasets and a cutting-edge machine learning frame-
work, Tianyi Wang and his colleagues tackled the issue of market segment-level
flight price prediction [1]. The DB1B and T-100 databases, which are gathered
and managed by the Office of Airline Information under the United States Bureau
of Transportation Statistics, are two particular public datasets from which their
suggested framework gathers information (BTS). The DB1B dataset has been used
in several studies that analyze the structure and dynamics of O-D for the core
of the air travel industry [2], estimate demand [3], and evaluate the factors that
affect aircraft features and flight frequency. The T-100dataset covers big certified
carriers with Certificates of Public Convenience and Necessity and contains air
passenger volumes for domestic and international markets in the United States.
Their suggested architecture aims to provide a thorough profile of each market
and use machine learning techniques to forecast the typical airfare at the level of
market segments.

A regression model put up by Groves and Gini uses the history diagram to forecast
the ideal time to book airline tickets [4]. From February 22, 2011, to June 23,
2011, they gathered their data, which included over 140.000 records in total [5].
Their model consists of two phases. To start, they predicted the day price using
a regression model. The second step was to create a reliable rule based on the

4

Related Work

dependable threshold. If the price is less than the value, which is the predicted
price less the threshold, passengers should purchase the ticket. Travelers should
wait if not. Their findings demonstrated that their methodology can successfully
reduce the average cost when the purchase date is more than two months out from
the departure date. Additionally, their technology allows users to input preferences
like the number of pauses they are willing to take. The same year, Wohlfarth et
al. presented the MPP (Marked Point Process) preprocess technique [6]. It is
concentrating on predicting when the price will decrease or decline. They used a
clustering technique and a tree model to generate predictions after reducing the
size of the feature collection. Their information was gathered from nine providers
of airline tickets, with a focus on six roundtrips. They selected 3, 7, or 14 days as
the duration of stay to cover the most typical stay.

Tanisha Patel used Python libraries like Pandas, NumPy, Matplotlib, seaborn, and
Sklearn to implement the machine learning life cycle and construct a simple web
application that predicts travel pricing by utilizing machine learning algorithms
on historical flight data [7]. The first stage in gathering historical flight data
for the model to anticipate pricing is data selection. More than 10,000 records
of information on flights and their costs are included in their dataset. Source,
destination, departure date, departure time, number of stops, arrival time, pricing,
and a few more parameters are among the features of the dataset. They cleaned the
dataset during the exploratory data analysis stage by deleting duplicate and null
values. The accuracy of the model would suffer if these values weren’t eliminated.
They learned other details, such as how the data was distributed. The following
stage is data pre-processing, during which we discovered that the majority of the
data was already in string format. Each feature’s data is retrieved, including
the day and month from the journey’s date in integer format and the hours and
minutes from the departure time. Because they were categorical features, source
and destination had to be turned into values. For this one, categorical variables are
transformed into model-identifiable values using hot-encoding and label-encoding
approaches. In the feature selection process, significant features that are more
closely connected to the pricing are chosen. Before making our model suitable
for prediction, there are several characteristics that need to be deleted since they
may impair the model’s accuracy, such as excess information and routes. The
following phase entails using a machine algorithm to create a model after choosing
the attributes that are most connected to pricing. As their dataset consists of
labeled data, they will employ supervised machine learning methods. Additionally,
because their dataset comprises continuous values in the features, they will employ
regression algorithms in supervised learning. To explain the link between dependent
and independent variables, regression models are utilized.

5

Related Work

Papadakis [8] used a wider range of features, some of which I believe may not be
available to consumers, like the number of unsold seats, and features based on
historical data, like the most recent price for the same ticket, to transform the
problem into a supervised classification problem with the aid of the Ripple Down
Rule Learner algorithm. Lu [9] used a neural network as one of their models in a
manner similar to this and used historical data elements including the highest and
lowest price to date. A well-known and widely cited publication in this field, To
Buy or Not to Buy: Mining Airfare Data [10] to Minimize Ticket Purchase Pricing,
investigates how airline costs change by examining pricing changes on a particular
aircraft number and route. The authors quantified their results by simulating the
predicted total savings from applying each strategy [11].

In Selim BUYRUKOLU’s study [12], 1814 one-way flights from Greece to Germany
made up the dataset. Based on Mean Squared Error-MSE values (Ridge: 160103,
Lasso: 159280, Elastic Net: 174203), and Mean Absolute Error-MAE values, the
created Ridge, Lasso, and Elastic Net techniques were successful in producing
compelling findings for flight pricing analysis (Ridge:147.74, Lasso:146.43, Elastic
Net:346.86). How closely a regression line resembles a group of points is explained
by MSE and MAE. They measure the "errors" by measuring the distances between
the points and the regression line. Both MSE and MAE calculate the squares
and absolutes of the errors. The forecast is more accurate the lower they are.
Lasso regression has the lowest MSE and MAE values in our scenario, making it
superior to the ridge and elastic net. Based on the lasso regression, two unrelated
features—overnight and arrival time—are removed. Future predictions of flight
costs can be made with greater datasets.

In [13], they suggested utilizing LR, Naive Bayes, SoftMax regression, and SVMs to
create a prediction model and divide the ticket price into five categories (i.e., 60%
to 80%, 80% to 100%, 100% to 120%, and so on) in order to compare the relative
values with the average ticket price. The models were developed using more than
9,000 data points, comprising six characteristics (e.g., the start of the departure
week, the date of the price quote, the number of stops on the itinerary, etc.). The
LR model was used by the authors to produce the best training error rate, which
was close to 22.9%. Their SVM regression model was unable to deliver a successful
outcome. Instead, the prices were divided into two categories: "greater" and "lower"
than the average, using an SVM classification model [1].

In [14], four LR models were tested in order to determine the optimal fit model,
with the goal of giving the passenger fair advice on whether to purchase the ticket or
wait longer for a lower price. The authors proposed to anticipate the cheapest ticket
prices, which are referred to as the "true bargains," using linear quantile mixed

6

Related Work

models. However, this research is only applicable to one ticket class, and economy,
and only on direct flights with a single stopover from John F. Kennedy Airport to
the San Francisco Airport. In order to aid the consumers’ decision-making process,
Wohlfarth et al. [15] incorporated clustering as a preliminary stage with many
cutting-edge supervised learning algorithms (classification tree (CART) and RF).
To group flights in the price series that exhibit similar behavior, their architecture
employs the K-Means method. They then employ CART to understand insightful
rules and RF to convey knowledge about the significance of each aspect. The au-
thors also noted that one aspect, the number of seats remaining, is a crucial aspect
of ticket price prediction. Numerous more factors influence the competitive market
in addition to flight-specific aspects. For instance, a travel agency’s accumulated
expenditures, which are brought on by over-purchasing or missed orders, can be
decreased by accurately anticipating the market demand.

In [16], it describes how the author used Artificial Neural Networks (ANN) and
Genetic Algorithms (GA) to forecast the income from sales of airline tickets. The in-
put characteristics included the price of crude oil on the world market, the weighted
index of Taiwan’s stock market, the monthly unemployment rate in Taiwan, and
more. In order to boost the performance of the ANNs, the GA specifically chooses
the best input characteristics. With a mean absolute percentage error of 9.11%,
the model performed well. More sophisticated machine learning models have been
taken into consideration to enhance the forecast of flight prices as of 2017 [17][18].
Eight machine learning models, including ANNs, RF, SVM, and LR, were used by
Tziridis et al. [17] to forecast ticket prices and evaluate their effectiveness. The
most accurate regression model has an 88% accuracy rate. The Bagging Regression
Tree, which is reliable and unaffected by utilizing various input feature sets, is
judged to be the best model in their comparison.

Deep Regressor Stacking was suggested in [17] as a way to make forecasts that
were more accurate. The suggested solution is a brand-new multi-target strategy
that uses RF and SVM as regressors and is easily adaptable to other problem
domains with a similar set of issues. Since airline ticket data is rarely categorized
and prepared for direct analysis, gathering and processing such data is always
labor-intensive. For the majority of analyses reported in the literature, researchers
either seek private data from collaborative groups or web crawl the data to test the
effectiveness of their models on various datasets. It is so challenging to reproduce
the study and make performance comparisons among the models. The T100 and
DB1A/1B databases include publicly accessible fare data for American airlines.
However, these datasets are rarely employed independently to produce scientific
study outputs due to the weak correlation between the pricing and individual flight
details [19]. However, it is more probable that academics who are interested in,

7

Related Work

say, examining price dispersion may think about looking into the data from those
databases [20].

The Official Airline Guide (OAG) and DB1B data are utilized to estimate the
airline pricing in Rama-dissertation Murthy’s [21]. Additionally, the author uses
Sabre AirPrice data that SABRE gave, however, they only provide information
on their online users. The conclusions from the data might be skewed because
this internet user data does not reflect the whole consumer market. Our suggested
system, in contrast to prior and current work, is able to solve the price prediction
problem by utilizing just public data sources with a minimum of characteristics.
Additionally, as it is not constrained by any particular market segment as is the
case with the prior work, the suggested framework may be used to estimate the
cost of air travel in any market.

8

Chapter 3

Methods

3.1 Machine Learning for Regression
3.1.1 Ridge Regression
We just assume that A and B have been centered, therefore the regression does not
require a constant term:
(1) A is an n by p matrix with centered columns,
(2) B is a centered n-vector.

Before computing the inverse of the matrix A′A, Hoerl and Kennard (1970) sug-
gested that potential instability in the LS estimator could be reduced by adding a
small constant value λ to the diagonal entries.

β̂ = (A′A)−1
X ′B (3.1)

The result is the ridge regression estimator

β̂ridge = (A′A + λIp)−1
A′B (3.2)

The parameters (β′s) are subject to a specific type of constraint in ridge regression:
β̂ridge is chosen to minimize the penalized sum of squares:

n∑
i=1

bi −
p∑

j=1
aijβj

2

+ λ
p∑

j=1
β2

j (3.3)

which is equivalent to minimization of ∑n
i=1

(
bi −∑p

j=1 aijβj

)2
subject to, for some

c > 0,
∑p

j=1 β2
j < c, i.e. constraining the sum of the squared coefficients.

9

Methods

Ridge regression thus imposes additional restrictions on the linear model’s pa-
rameters, βj ’s. In this instance, we are adding a penalty term to the β′’s in addition
to reducing the residual sum of squares. This penalty term is equal to the squared
norm of the β vector times the predetermined constant λ. This implies that the
optimization function is penalized if the βj’s assume big values. To reduce the
penalty term, we would prefer to accept lower βj’s or βj’s that are near zero.

In ridge regression, the means of the variables—both dependent and indepen-
dent—are subtracted, and their standard deviations are divided. Since we need the
means to indicate whether the variables in a particular formula are standardized or
not, this is a challenge for notation. To keep the presentation simple, we will make
the following general observation before ignoring standardization and its confusing
terminology.

In terms of standardization, all ridge regression calculations are based on standard-
ized variables. Before being shown, the computed regression coefficients are scaled
back to their initial value. However, the ridge trace employs a traditional scale.

A ridge estimator is a shrinkage technique used in ridge regression. In order
to provide a result that is more in line with the real population parameters, shrink-
age estimators create new estimators that have been shrunk in size. A least squares
estimate can be shrunk using a ridge estimator in multicollinear data to improve
the estimate.

Regularization in ridge regression includes the application of a penalty to co-
efficients. When the coefficients are affected by the same factor, shrinkage occurs.
This means that no coefficient will be left out when the model is constructed.

Ridge regression’s geometric interpretation:

OLS estimate

Ridge
estimate

𝛽!

𝛽"

Figure 3.1: Ridge regression

10

Methods

For p = 2, the constraint in ridge regression corresponds to a circle,
p∑

j=1
β2

j < c (3.4)

In ridge regression, we want to simultaneously reduce the size of the circle and
the ellipse. The intersection of the ellipse with the circle provides the ridge estimate.

The punishment period and RSS are subject to trade-offs. Perhaps using a big β
might improve the residual sum of squares, but doing so would raise the penalty
term. Given that lesser β values have a poorer residual sum of squares, you could
actually prefer them. The penalty term is similar to a constraint on the β’s from
an optimization standpoint. Although the norm of the βj’s is now constrained to
be less than a certain constant c, the function is still the residual sum of squares.
A correlation exists between λ and c. You prefer the βj’s nearer to zero more the
greater the λ is. When λ = 0, the worst case scenario, you would just be performing
a standard linear regression. On the opposite extreme, you set all the β′s to zero
as λ gets closer to infinity.

We are aware that the Ordinary Least Square Method (OLS) handles every vari-
able equally. Therefore, the OLS model gets more complex as more variables are
included.

In the image below, the OLS model is on the right side with a low bias and
a high variance. The OLS model’s position is stationary and fixed, however, ridge
regression can cause a shift in position.

As we adjust the lambda parameter in ridge regression, the model coefficients
will vary.

OLS
Total error

Variance

Model Complexity

Er
ro
r

O
pt

im
um

 M
od

el
 C

om
pl

ex
ity

𝑩𝒊𝒂𝒔𝟐

Figure 3.2: Bias

11

Methods

Grid Search

A technique for fine-tuning parameters; exhaustive search: by looping over and
attempting each option, the best-performing parameter is the end result. The idea
is similar to determining the highest value in an array.

The Grid Search reference method’s main drawback is that it takes a long time;
the more candidates and parameters there are, the longer it takes. Therefore, a
broad range is often established first, followed by refinement.

Table 3.1: Parameters table

C=0.001 C=0.01 … C=10

gamma=0.001 SVC(C=0.001, gamma=0.001) SVC(C=0.01, gamma=0.001) … SVC(C=10, gamma=0.001)

gamma=0.01 SVC(C=0.001, gamma=0.01) SVC(C=0.01, gamma=0.01) … SVC(C=10, gamma=0.01)

… … … … …

gamma=100 SVC(C=0.001, gamma=100) SVC(C=0.01, gamma=100) … SVC(C=10, gamma=100)

Retrained model

Cross-validation

Parameter grid Data set

Training data

Best parameters

Test data

Final evaluation

Figure 3.3: Overview of the parameter selection and model assessment procedures
using GridSearchCV

Cross validation is used to lessen the chance since the outcomes of the first data
partitioning have a significant impact on the grid search method’s ultimate per-
formance. Grid search with cross validation is a common parameter assessment
technique that combines grid search and cross validation. As a result, sklearn
created a class called GridSearchCV that implements fit, predict, score, and other
functions. It is used as an estimator using the fit method, which finds the best
parameters, and instantiates an estimator with the best parameters.

12

Methods

In general, cross-validation seeks to fulfill:
(1) The training set’s percentage should be sufficient, usually larger than 50%.
(2) Equal samples from the training set and test set should be used.

Cross-validation is mainly divided into the following categories:

(1)Least-one-out cross-validation (LOOCV)
LOOCV is also n-CV if the dataset has n samples, in which case each sample is uti-
lized as a separate test set and the remaining n-1 samples are used as the training set.

Advantages:
(a) Almost all samples from each round are utilized in the training mode, which
results in a distribution that is the most similar to the original sample and more
accurate estimates of the generalization error.
(b) The experimental data won’t be impacted by random events, allowing the
experiment to be repeated.

The high computational cost of LOOCV makes it impossible to apply in real-
ity either each training model runs extremely quickly or the amount of time needed
for calculation may be decreased via parallelization. This is because the number of
modifications necessary is equal to the total number of samples.

(2)K-folder cross-validation
K subsets, with the first subset serving as a test set and the remaining subsets
serving as the training set. Every time the cross-validation is performed, a subset
is chosen as the test set. The average cross-validation recognition rate over the
course of k repetitions is then used to calculate the outcome.

Benefits: Each sample is verified just once, and all samples are utilized as test
and training sets.
Understanding that LOOCV is a unique K-fold Cross Validation (K=N) is not
difficult.
As we can see, LOOCV and 10-fold CV really produce estimates of the test MSE
that are very close. However, 10-fold CV has a lot lower computational cost and
runs much faster than LOOCV. Compared to LOOCV, the computational cost is
substantially lower and takes much less time.

3)K * 2 folder cross-validation
K* 2 folder cross-validation is a variant of k-folder cross-validation in which each
folder is evenly divided into two sets, s0, and s1, and the first set is trained with

13

Methods

the s1 test before the second set is trained with the s0 test.
Advantage: The test and training sets are both big enough to serve as both
training and test sets for each sample.

In this paper, we set a set of parameters: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,
10000, 100000] in the ridge regression model to perform the airline ticket prediction
task, using the Grid search with validation method, setting K = 10. It doesn’t
work well in our dataset, we can see it in Table 4.3.

3.1.2 Lasso Regression
Lasso regression is a type of regularization. It is preferred over regression approaches
for more precise prediction. This model makes advantage of shrinkage. Shrinkage
is the process by which data values are shrunk towards a central point known as
the mean. The lasso method promotes basic, sparse models (i.e. models with
fewer parameters). This form of regression is ideal for models with high degrees
of multicollinearity or for automating some aspects of model selection, such as
variable selection/parameter removal. The L1 regularization technique is used in
Lasso Regression.

Regularization
Regularization is a key concept that is utilized to avoid data overfitting, especially
when the learned and test data differ greatly. Regularization is carried out by
adding a "penalty" term to the best fit produced from the training data in order to
attain a lower variance with the tested data. It also limits the effect of predictor
variables over the output variable by compressing their coefficients.

In regularization, we typically preserve the same number of features while de-
creasing the magnitude of the coefficients. To solve this difficulty, we may utilize
several sorts of regression approaches that use regularization to lower the size
of the coefficients. Ridge Regression and Lasso Regression are the two basic
regularization techniques. They differ in how they apply a penalty on the coeffi-
cients. When a regression model employs the L1 Regularization approach, it is
referred to as Lasso Regression. Ridge Regression is employed when the L2 regu-
larization approach is applied. In the next parts, we will go deeper into these topics.

L1 regularization adds a penalty proportional to the absolute value of the co-
efficient’s magnitude. This kind of regularization can provide sparse models with
few coefficients. Some coefficients may reach 0 and so be removed from the model.
Greater penalties result in coefficient values closer to zero (ideal for producing
simpler models). L2 regularization, on the other hand, does not result in the

14

Methods

eradication of sparse models or coefficients. As a result, Lasso Regression is easier
to read than Ridge Regression.

Mathematical equation
LASSO regression is an L1 penalized model in which we simply add the weights’
L1 norm to our least-squares cost function:

J(w) =
n∑

i=1
(yi − ŷi)2 + α

m∑
j=1

|wj|

ŷi = w0 +
m∑

j=1
Xijwj

(3.5)

We enhance the regularization strength and lower the weights of our model by
raising the value of the hyperparameter α. Please keep in mind that the intercept
term w0 is not regularized. It is also worth noting that α = 0 corresponds to
normal regression analysis. Certain weights can become zero depending on the
regularization strength, making the LASSO approach a particularly strong tool for
dimensionality reduction.

Similar to what we did in the Ridge regression model, we set a set of param-
eters: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000] in the lasso
regression model to perform the airline ticket prediction task, using the Grid search
with validation method, setting K = 10. The performance is similar to the Ridge
regression model, it doesn’t work well in our dataset, as we can see in Table 4.3.

3.1.3 K-Nearest Neighbors
The k-nearest neighbor’s algorithm (KNN) in statistics was created by Evelyn Fix
and Joseph Hodges in 1951 [22] and subsequently improved by Thomas Cover. It is
a non-parametric supervised learning technique. [23] Regression and classification
are two uses for it. The input in both situations consists of a data set’s k closest
training samples. Whether KNN is applied for classification or regression deter-
mines the results:
(1) The outcome of KNN classification is a class membership. The class that
an object is allocated to based on the majority vote of its k closest neighbors is
determined by the item’s neighbors (k is a positive integer, typically small). The
item is simply put into the class of its one nearest neighbor if k = 1.
(2) The result of KNN regression is the object’s property value. The average of the
values of the k closest neighbors makes up this number.

With KNN, all computation is postponed until after the function has been evaluated

15

Methods

and the function is only locally approximated. Since this technique depends on
distance for classification, normalizing the training data can significantly increase
accuracy if the features reflect several physical units or have distinct sizes. [24][25]

Assigning weights to neighbor contributions may be a helpful strategy for both
classification and regression, making the closer neighbors contribute more to the
average than the farther neighbors. As an illustration, a typical weighting method
assigns each neighbors a weight of 1/d, where d is the distance between the neigh-
bors.

When using KNN classification or regression, the neighbors are chosen from a
collection of objects for which the class or object property value is known. Al-
though there is no need for an explicit training phase, this may be considered as
the algorithm’s training set.

The KNN method has the feature of being sensitive to the local structure of
the data.

The k-nearest neighbor algorithm’s objective is to locate a query point’s clos-
est neighbors so that we may categorize that location. KNN needs a few things in
order to do this:

Determine your distance metrics
The distance between the query point and the other data points must be determined
in order to discover which data points are closest to a certain query point. These
distance measurements aid in the creation of decision borders, which divide query
points into several zones. Decision boundaries are frequently represented using
Voronoi diagrams.

Despite the fact that there are several distance measurements available, this
article will only discuss the following:
Euclidean distance (p=2): This distance metric, which can only be applied to
real-valued vectors, is the most often used one. The straight line between the query
location and the other point being measured is calculated using the formula below.

d(a, b) =
√√√√ n∑

i=1
(bi − ai)2 (3.6)

Manhattan distance (p=1): The absolute value between two places is measured
using this common distance metric. It is also known as taxi distance or city block
distance since it is frequently represented by a grid and shows how one may travel

16

Methods

between two addresses using city streets.

ManhattanDistance = d(a, b) =
(

m∑
i=1

|ai − bi|
)

(3.7)

Minkowski distance: The generalized version of the Manhattan and Euclidean
distance metrics is this one. Other distance measures can be created using the
parameter p in the formula below. This formula denotes Manhattan distance when
p is equal to one and Euclidean distance when p is equal to two.

MinkowskiDistance =
(

n∑
i=1

|ai − bi|
)1/p

(3.8)

Hamming distance: This method helps to locate the locations where two vectors
do not match and is commonly used with string or Boolean vectors. Because of
this, it is also known as the overlap metric. This may be modeled using the formula
below:

HammingDistance = DH =
(

k∑
i=1

|ai − bi|
)

a = b D = 0; a /= y D /= 1 (3.9)

The k parameter in the KNN method specifies how many neighbors will be examined
to establish a particular query point’s categorization. The instance will be placed
in the same class as its lone nearest neighbor, for instance, if k=1. In order to
avoid either overfitting or underfitting, several values of k must be considered while
defining it.

𝜔!
𝜔!

𝜔!

𝑋"

Figure 3.4: Geometrical description of KNN

(1) If k is set too low, the noise will have an impact on the forecast; for instance, if
k is set to 1, there will be deviations once the nearest point is noisy. Lowering k
also makes the entire model more complicated and more prone to overfitting. The

17

Methods

approximation error of learning will rise if the value of k is selected too high, which
is analogous to forecasting using training examples in a broader neighborhood. The
total complexity of the model decreases as k increases.
(2) If k == N, it will take all examples, i.e., the most points under a certain
categorization in the instances, which has no real-world use for the prediction.

The procedure for taking k: The typical approach is to start with k=1 and
use the test set to estimate the classifier’s error rate. Every time k rises in value by
1, allowing for one more nearest neighbor, the procedure is repeated. The k that
produces the lowest error rate is chosen.

Similar to any machine learning algorithm, KNN has advantages and disadvantages.
It might or might not be the best option, depending on the project and application.

Advantages
(1) Simple to use: The method is one of the first classifiers that a novice data
scientist will learn due to its clarity and accuracy.
(2) Readily adapts: Because all training data is kept in memory, the algorithm can
easily adapt when fresh training examples are introduced.
(3) Few hyperparameters: Compared to other machine learning algorithms, KNN
just needs a k value and a distance metric.

Disadvantages
(1) Is not scalable: KNN is a lazy algorithm, which means it uses more memory
and data storage than other classifiers. Both in terms of time and money, this may
be expensive. Business costs will increase with additional memory and storage, and
processing more data may take longer. Different data structures, such as the Ball-
Tree, have been developed to alleviate computational inefficiencies; nevertheless,
depending on the business challenge, a different classifier may be the best option.
(2) Dimensionality curse: The KNN method frequently suffers from the dimensional-
ity curse, which causes it to underperform with high-dimensional data inputs. The
peaking phenomenon describes a situation in which, when the algorithm reaches
the optimal number of features, adding more features causes a rise in classification
mistakes, particularly when the sample size is less.
(3) Prone to overfitting: KNN is more vulnerable to overfitting as a result of
the "curse of dimensionality." The choice of features and dimensionality reduction
strategies are used to avoid this, but the value of k can also affect how the model
behaves. Higher values of k tend to "smooth out" the prediction values because they
average the values over a larger region or neighborhood, whereas lower values of k
might overfit the data. However, if k is set too large, the data may not be well suited.

18

Methods

In this study, we establish the number of neighbors in the KNN regression model,
starting at 1, and enable one more nearest neighbor to be added each time K grows
in value by 1 until it reaches 30 for the ticket prediction job. The outcomes are as
follows when there are 10 validations.

3.1.4 Support Vector Regression

What is Support Vector Machine?

Finding a hyperplane in N-dimensional space (N is the number of features) that
categorizes the data points clearly is the goal of the support vector machine method.

Optimal hyperplane

Maximum
margin

𝑥! 𝑥!

𝑥" 𝑥"

Figure 3.5: Possible hyperplanes

There are a variety of different hyperplanes that might be used to split the two
classes of data points. Finding a plane with the greatest margin—that is, the
greatest separation between data points from both classes—is our goal. Maximizing
the margin distance adds some support, increasing the confidence with which future
data points may be categorized.

19

Methods

A hyperplane in 𝑅! is a line A hyperplane in 𝑅" is a plane

Figure 3.6: Hyperplanes in 2D and 3D feature space

Decision boundaries known as hyperplanes assist in categorizing the data points.
Different classifications can be given to the data points that lie on each side of the
hyperplane. Additionally, the amount of features affects how big the hyperplane is.
The hyperplane is essentially a line if there are just two input characteristics. The
hyperplane turns into a two-dimensional plane if there are three input characteristics.
When there are more than three characteristics, it gets harder to imagine.

Small Margin Large Margin

Support Vectors

Figure 3.7: Different sizes of margin

Support vectors are data points that are closer to the hyperplane and have an
impact on the hyperplane’s location and orientation. By utilizing these support
vectors, we increase the classifier’s margin. The hyperplane’s location will vary if
the support vectors are deleted. These are the ideas that aid in the development of
our SVM.

20

Methods

Large Margin Intuition

In logistic regression, we take the output of the linear function and use the sigmoid
function to compress the result inside the range [0,1]. We provide a label of 1 if
the squished value exceeds a threshold value (0.5), else we assign a label of 0. In
SVM, the output of the linear function is taken into consideration. If the output is
more than 1, it is associated with one class, and if it is less than 1, it is associated
with a different class. We get this reinforcing range of values ([-1,1]) that serves as
a margin since the threshold values in SVM are altered to 1 and -1.

Cost Function and Gradient Updates

The goal of the SVM method is to increase the distance between the data points
and the hyperplane. Hinged loss is the loss function that aids in maximizing the
margin.

c(x, y, f(x)) =
{

0, if y ∗ f(x) ≥ 1
1 − y ∗ f(x), else c(x, y, f(x)) = (1 − y ∗ f(x))+

(3.10)
Hinge loss function (function on left can be represented as a function on the right)

If the projected value and the actual value have the same sign, there is no cost. If
not, we next determine the loss value. The cost function additionally receives a
regularization parameter from us. The regularization parameter’s goal is to strike
a compromise between margin maximization and loss. The cost functions appear
as follows when the regularization parameter has been added.

min
w

λ∥w∥2 +
n∑

i=1
(1 − yi ⟨xi, w⟩)+ (3.11)

Loss function for SVM

Now that we know the loss function, we can find the gradients by taking partial
derivatives with respect to the weights. We may modify our weights using the
gradients.

δ

δwk

λ∥w∥2 = 2λwk

δ

δwk

(1 − yi ⟨xi, w⟩)+ =

0, if yi ⟨xi, w⟩ ≥ 1
−yixik, else

(3.12)

Gradient Update - Misclassification

21

Methods

We only need to update the gradient from the regularization parameter when there
is no misclassification, which is to say when our model predicts the class of our
data point accurately.

w = w − α · (2λw) (3.13)

Gradient Update - No misclassification

In order to execute a gradient update when there is a misclassification, or when
our model incorrectly predicts the class of a data point, we add the loss along with
the regularization parameter.

w = w + α · (yi · xi − 2λw) (3.14)

Gradient Update - Misclassification

Regression is performed using support vectors

SVMs may be utilized to tackle regression problems, after all. We are aware
that the decision boundary seen in the previous picture may be utilized to distin-
guish between the two groups. There are two alternative solutions to this problem,
which is referred to as discrete one: class 0 for everything above the line and class
1 for anything below the line. Classification issues are effective illustrations of
challenges with discrete machine learning.

There is no such thing as a result being "above the line" or "below the line"
in regression since one input value is mapped to real numerical output, a number.
Instead, we must produce the result using the border itself. However, since a
precise, maximum-margin fit is extremely challenging in those circumstances, the
problem would exponentially worsen if we attempted to discover a perfect boundary
for our continuous data.

This emphasizes the importance of the boundary’s accuracy and temporal com-
plexity, although Support Vector Machines may be used to conduct what is known
as Support Vector Regression (SVR). As a result of the requirement that it learns
to calculate continuous outputs, an error-accepting region known as the error tube
is captured around the maximum-margin decision boundary. Finding a tube that
is as short as feasible while without significantly sacrificing model complexity or
training time is the aim of SVR.

Imagine that all of the samples in the above image are just samples and rep-
resent some x → y mapping from one continuous input to a continuous output
value rather than being members of any specific class. It goes without saying that
you want the regressed function to fall somewhere in the middle of the samples

22

Methods

when executing a regression job. With support vectors towards the center of your
dataset, Support Vector Machines will regress a function that translates those
inputs to outputs, making them a strong fit for (linear, and if not linear, using
some kernel function with the kernel technique) regression issues.

Epsilon-SVR and nu-SVR

In reality, there are two varieties of support vector regression: epsilon-based
SVR(ϵ − SV R)and nu-SVR (ν − SV R). The degree of control they provide you
over the regression problem is how they vary (StackExchange, n.d.):

You can control the overall number of support vectors utilized with ν − SV R,
but not necessarily the amount of tolerable error (often yielding smaller but possi-
bly worse models).

When utilizing ϵ − SV R, you can adjust the allowable level of error but not
always the total number of support vectors (often yielding better but large models).

In this paper, we set a set of regularization parameters C: [1e0, 1e1, 1e2, 1e3] in
the support vector regression model to perform the airline ticket prediction task,
using the Grid search with validation method. The strength of the regularization is
inversely proportional to C and must be strictly positive. The penalty is a squared
l2 penalty. And we also use a set of Gaussian kernel coefficients in our model, to
get good performance. This model is time-consuming but it doesn’t work well in
our dataset, we can see it in Table 4.3.

3.1.5 XGBoost
XGBoost, also known as Extreme Gradient Boosting, is a supervised learning tech-
nique that uses an ensemble approach based on the Gradient boosting algorithm.
It is a scalable end-to-end tree-boosting system, widely used by data scientists to
achieve state-of-the-art results on many machine learning challenges. It can solve
both classification and regression problems and achieve better results with minimal
effort.

XGBoost’s key features:
(1)Regularization: To minimize overfitting, XGBoost provides a variety of regular-
ization penalties. Penalty regularizations result in successful training, allowing the
model to generalize well.
(2)Missing Value: It is built in such a way that it can deal with missing values. It
identifies and apprehends trends in missing values.

23

Methods

(3)Flexibility: It provides assistance for objective functions. They are the function
used to assess the model’s effectiveness, and they may also manage user-defined
validation measures.
(4)Cross-Validation: Built-in and comes out-of-the-box.
(5)Save and load: It provides the ability to save the data matrix and reload it later,
saving resources and time.

How does the XGBoost algorithm work?
Think about a function or an estimate. To begin, we create a series based on
the function gradients. The equation below represents a specific type of gradient
descent. Because it depicts the Loss function to minimize, it indicates the direction
in which the function drops. is the rate of change fitted to the loss function; it
corresponds to the gradient descent learning rate. is intended to accurately replicate
the loss’s behavior.

Fxt+1 = Fxt + ϵxt

∂F

∂x
(xt) (3.15)

To iterate over the model and discover the best definition, we must represent the
entire formula as a sequence and construct an effective function that will converge
to the function’s minimum. This function will act as an error measure, assisting
us in reducing loss and maintaining performance over time. The series converges
to the function’s minimum. This notation specifies the error function used while
evaluating a gradient-boosting regression.

f(x, θ) =
∑

l (F ((Xi, θ) , yi)) (3.16)

In this study, we set the depth of the tree to be 3, the learning rate of the model
generated by each iteration is 0.1, the number of sub-models is 100, and the loss
function is set to squared loss.

3.1.6 Decision Tree
A decision tree is a supervised machine-learning approach that uses a tree structure
resembling a flowchart to represent decisions, outcomes, and predictions. Such a
tree is created using an algorithm (series of if-else statements) that determines how
to divide, categorize, and display a dataset in accordance with certain criteria.

Each internal node in a decision tree represents a test on a dataset feature (such as
the outcome of a coin toss, heads or tails), and each leaf node in a decision tree
represents an outcome (such as the choice made after simulating all features), and
branches in a decision tree represent the decision rules or feature conjunctions that
result in the corresponding class labels.

24

Methods

Regression and classification problems are frequently solved using decision trees. In
classification issues, target variables storing discrete values are used by tree models
to label or classify an entity. However, in regression issues, the objective variable
has continuous values (actual numbers), and tree models are employed to predict
results for unobserved data.

For machine learning and data mining, decision trees that employ a predictive
modeling method are frequently used. By taking into account data from the sample
population, the model generates precise judgments about the sample’s goal value
(represented by leaves) (illustrated via branches).

How does a decision tree work?

Data

Training
data

Test
 data

Decision Tree Generation

Gini index
or Gain ratio

Information
gain

Overfitting?

Select best
attribute in
dataset X

using ASM

Divide X
dataset into

smaller
subsets

Recursively repeat
the process for
each child node

Model
evaluation

Performance metric
-Accuracy
-Precision

Figure 3.8: The working mechanism of the decision tree

By using orthogonal splits to create decision areas, tree-based approaches impose
if-else conditions on features. When creating such tree-based solutions, it is essential
to comprehend how these splitting conditions are created and how many times the
decision space has to be divided.

The selection of the features to divide, the values of the feature split, and the point
at which to cease splitting are all critical issues that good decision trees handle.
Let’s examine each requirement in further depth.

Splitting features

25

Methods

A top-down greedy method is used by decision trees to determine the appro-
priate feature split. In greedy approaches, all points in the same decision area
are divided, and further splits are done methodically. The branch (sub-tree) that
results has a higher metric value than the preceding tree.

For many classification and regression problems, common cost functions include:
For classification problems:

Entropy: Entropy quantifies the degree of uncertainty in the processed infor-
mation and determines its unpredictability. The more entropy there is, the harder
it is to draw inferences from a situation. The general goal is to reduce entropy and
create decision zones that are more homogenous and contain data points that are
members of the same class. Entropy is given by the formula,

Entropy = −
n∑

i=1
pi

∗ log2 (pi) (3.17)

Where p = probability of an element or class in the data

Gini index: The metric calculates the odds that a randomly chosen data point
would be incorrectly labeled by a certain node. The Gini index serves as the cost
function for assessing feature splits in a dataset.
The Gini index is given by the formula,

Gini = 1 −
n∑

i=1
(pi)2 (3.18)

Where p is the likelihood that an item will be placed in a specific class

Information gain (IG): The Gini index or reduction in entropy as a result
of a feature split is measured using the IG metric. When tree-based algorithms
utilize Entropy or the Gini index as a criterion, informative splits are obtained. In
other words, a split like that only decreases the needs by a certain percentage.

The formula provides information gain,
Information Gain = Entropy (X: before splitting) – Entropy (each feature: after
splitting)

For regression problems:

Residual sum of squares: For each data point in a decision region, the metric is
equal to the total of the squared differences between the observation (target class)

26

Methods

and the mean response. To reduce the residual sum of squares, feature splits are
chosen.

In order to maximize information gain or decrease the residual sum of squares, the
feature splits are designed so that the feature value is higher. The procedure is
repeated to perform more best splits.

The tree tends to get increasingly complicated as the splitting process goes on, and
the algorithm unavoidably learns noise in addition to signals from the dataset. Due
to overfitting, the decision tree can only be used for the training dataset and is
unable to generalize to other untrained or untested datasets. As a result, decision
trees employ pruning procedures.

By removing tree portions with poor predicting ability, pruning techniques lower the
overfitting component. Removing the weak or irrelevant rules makes the decision
tree simpler. There are two methods to do this:
(1) Limit the decision tree’s maximum depth
(2) Impose a minimum sample size per decision space restriction.

Cost complexity pruning is another technique for pruning. Here, the sub-trees are
removed by adding a new term to the cost function. Simply said, the traditional
recursive splitting strategy is used to create a large decision tree at first. After the
tree has been created, cost complexity pruning is used to determine the optimal
order for sub-trees and to remove unimportant sub-trees based on weights. In
Lasso Regression, when the model complexity is regularized by penalizing weights,
this technique is evident.

The decision tree’s operation is made simpler by the following algorithm:
Step I: Begin the decision tree with X as the root node. X contains the entire
dataset in this case.
Step II: Using the ’attribute selection measure (ASM),’ choose the optimal at-
tribute in dataset X to partition it.
Step III: Subdivide X into subsets with the best qualities’ potential values.
Step IV: Create a tree node containing the best attribute.
Step V: Recursively generate new decision trees using the subsets of the dataset
X established in step III. Continue the process until you can no longer categorize
the nodes. The final node is referred to as a leaf node.

27

Methods

Internal
Node

Internal
Node

Root
Node

Leaf Node Leaf Node Leaf Node Leaf Node

Figure 3.9: The elements in a decision tree

The attribute selection measure in the preceding procedure refers to a form of
heuristic used to determine the splitting criterion that optimally splits a given
dataset (X) into different subsets. In other words, it specifies how datasets or
subsets at a certain node will be divided.

Different strategies may be used by decision trees to split and subdivide a node
into additional sub-nodes. Technically, the decision tree splits the nodes using
all of the relevant factors, but it ultimately selects the split that produces the
most homogenous sub-nodes. Here, choosing a method is greatly influenced by the
nature of the target variable.

Let’s examine some of the popular algorithms that decision trees employ.

(1) Iterative Dichotomiser 3 (ID3)
With the entire dataset "X" as the root node, the Iterative Dichotomiser 3 method
creates decision trees. It then repeats the instructions for each attribute and di-
vides the data into subgroups using metrics like entropy or information gain. After
splitting, the method iteratively considers the properties not taken into account in
the first splits for each subgroup.
When continuous variables are taken into account, the ID3 method typically overfits
the data, and dividing the data can be time-consuming. The ID3 algorithm is
employed in several machine learning and natural language processing fields.

(2) C4.5
An improved version of the ID3 algorithm is C4.5. It regards samples with classifi-
cation as data. To separate the nodes, the method employs normalized information
gain. Additionally, the character with the greatest information gain determines the
final data split.

28

Methods

Contrary to the ID3 method, C4.5 effectively handles both discrete and continuous
properties. Additionally, after creating the final decision tree, the algorithm goes
through a pruning procedure in which all the branches with little significance or
relevance are eliminated.

(3) Classification and regression trees (CART)
Both classification and regression issues can be resolved with the CART method.
Additionally, it divides the datasets using the Gini index measure, as opposed to
the ID3 and C4.5 algorithms, which employ information gain or entropy and gain
ratio.
The goal of the greedy strategy used in the CART splitting procedure is to minimize
the cost function. The purity of the leaf nodes is calculated for classification tasks
using the Gini index as a cost function. To select the most accurate forecast, the
method uses the total squared error as the cost function for regression.

(4) Chi-square automatic interaction detector (CHAID)
All sorts of variables, including nominal, ordinal, and continuous ones, are revealed
by the CHAID method. The CHAID method builds a tree that shows the optimum
way to combine variables in order to reveal the result for the specified dependent
variable.
The CHAID algorithm uses each categorical predictor individually to build a tree,
taking into account all potential combinations, then repeats the procedure until no
more splitting is possible. This suggests that the ideal result is ultimately attained.
Finding a root node for the tree that reflects the target or dependent variable is
the first step in the decision tree creation process. The target variable is further
separated into numerous parent nodes. Finally, using statistical techniques, these
nodes are split into child nodes.
The merging of variables in the CHAID analysis is based on tests; for instance, the
’F-test’ is utilized if the dependent variable is continuous. If the dependent variable
is categorical, the "chi-square test" is also employed.

(5) Multivariate adaptive regression splines (MARS)
When there is non-linear data in a regression problem, MARS techniques are
frequently used. This adaptive spline approach divides the data into sections and
applies a linear regression model to each section separately.
MARS serves as a building block for nonlinear modeling and is closely related to
multiple regression models. The method, which is a CART adaption, enables the
addition of additional terms to the current model.

Advantages
(1) Decision trees are simple to learn and use because of their Boolean logic and

29

Methods

visual representations. A decision tree’s hierarchical structure also makes it simple
to understand which traits are most crucial, which is not necessarily the case with
other methods, such as neural networks.
(2) Hardly any data preprocessing is necessary: Decision trees are more adaptable
than other classifiers due to a variety of qualities. It may work with a variety of
data formats, such as discrete or continuous values, and it can employ thresholds
to turn continuous values into categorical values. It also has the ability to handle
missing value values, which may be difficult for other classifiers like Naive Bayes.
(3) More adaptable: Compared to certain other algorithms, decision trees are more
adaptable since they may be used for both classification and regression problems.
The method will only pick one of the characteristics to split on if two variables are
highly linked, as it is indifferent to the underlying connections between attributes.

Disadvantages
(1) Complex decision trees are prone to overfitting and poor generalization to fresh
data. Pre- or post-pruning procedures can be used to prevent this situation. When
there is insufficient data, pre-pruning stops the growth of the tree, but post-pruning
eliminates subtrees with insufficient data after the tree has been built.
(2) High variance estimators: Small differences in the data themselves might result
in highly diverse decision trees. Decision trees’ variance can be decreased via
bagging, which is the averaging of estimates. This method has drawbacks since it
might provide predictors that are strongly linked.
(3) More expensive: Compared to other algorithms, decision trees may be more
expensive to train since they employ a greedy search strategy during building.
(4) Insufficient support for scikit-learn: Python-based Scikit-learn is a well-known
machine learning package. Although there is a Decision Tree module in this library,
categorical variables are not yet supported by the implementation.

In the Decision tree regression model, we used the mean squared error function to
measure the quality of a split, which is equal to variance reduction as a feature
selection criterion and minimizes the L2 loss using the mean of each terminal node.
And we used the “best” strategy to choose the split at each node. Meanwhile,
when we set the maximum depth of the tree, nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. And
then we considered min_samples_split as the minimum number required to split
an internal node.

3.1.7 Random Forest Regression
A general model made up of several decision trees is known as a random forest.
Each decision tree’s predictions are averaged to provide the forecasts. A random

30

Methods

forest model is a collection of decision tree models, just like a forest is a collection
of trees. As a result, random forests are a robust modeling approach that is far
more effective than individual decision trees.

A random forest trains each tree using a portion of the data. Instead of de-
pending just on one decision tree to determine the outcome, the core idea behind
it is to merge many decision trees. Since each decision tree is perfectly trained for
a particular sample of data, the variance of the results is low even though each
decision tree has a high variance. However, when we combine all the decision trees
simultaneously, the output is not dependent on just one decision tree but rather on
several. The average of all decision tree outputs is used as the final result for the
regression issue.

4 Steps to Construct a Random Forest

Step1

Random
sampling to

train a decision
tree

Step2

Randomly
select attributes

as node split
attributes

Step3

Repeat step 2
until it can no
longer split

Step4

Build a large
number of

decision trees to
form a forest

Figure 3.10: Steps to build a random forest

(1) To obtain N samples, a sample with a sample size of N is pulled N times with
put-back, yielding 1 sample each time. As the samples at the decision tree’s root
node, these chosen N samples are utilized to train the tree.
(2) When each node of the decision tree has to be divided and each sample has M
attributes, m attributes are randomly picked from these M attributes, meeting the
criterion m M. The splitting attribute of the node is then chosen from among these
m attributes using a technique (such as knowledge gain).
(3) Each node is divided in accordance with step 2 of the development of the
decision tree (it is easy to understand that if the next selected attribute is the same
attribute that was used in the splitting of its parent node, the node has already
reached the leaf node and does not need to continue splitting). It continues until
splitting is impossible. Take note that no pruning is done at any point while the
decision tree is being formed.
(4) Create a huge number of decision trees in accordance with steps 1 through 3 to

31

Methods

create a random forest.

Using many models that have been trained on the same data and averaging
their findings to provide a more accurate prediction or classification is known as
ensemble learning. The assumption behind ensemble learning is that the faults of
each model—in this example, a decision tree—are distinct from one another and
independent of one another.

Bootstrapping involves randomly selecting subsets of a dataset over a certain
number of repetitions and variables. To provide a more potent outcome, these find-
ings are then averaged. An example of an applied ensemble model is bootstrapping.

The bootstrapping Random Forest approach combines ensemble learning tech-
niques with the decision tree framework to generate numerous randomly chosen
decision trees from the data. The outputs are averaged to get a new result, which
frequently produces accurate predictions and classifications.

Random Forest Regression Model:
Our random forest regression model will be trained using the sklearn module,
especially the Random Forest Regression function. Numerous possible parameters
that we may choose from for our model are listed in the Random Forest Regression
documentation.

The following list of crucial variables is highlighted:
n_estimators — the number of decision trees that the model will use.
criterion — the criteria (loss function) used to determine model results can be
chosen using this variable. Loss functions like mean squared error (MSE) and mean
absolute error is available to us (MAE). MSE is the default value.
max_depth — this determines each tree’s maximum feasible depth.
max_features — the most factors the model will take into account when deciding
on a split.
bootstrap — The model adheres to bootstrapping principles since the default setting
for this is True (defined earlier).
max_samples — This option presupposes that bootstrapping is set to True; oth-
erwise, it has no effect. This number determines the greatest size of each sample
for each tree when True is present.
Other important parameters are min_samples_split, min_samples_leaf, n_jobs,
and others that can be read in the sklearn’s.

The random forest approach has a variety of significant benefits and drawbacks
when used for classification or regression tasks. Some of them consist of:

32

Methods

Key Benefits
(1) Less chance of overfitting: Decision trees have a propensity to closely match all
the samples contained in training data, which increases the possibility of overfitting.
The classifier won’t, however, overfit the model when there are a large number of
decision trees in a random forest since the averaging of uncorrelated trees reduces
the total variance and prediction error.
(2) Flexibility: The Random forest is a well-liked approach among data scientists
since it can accurately handle both classification and regression jobs. The random
forest classifier benefits from feature bagging by maintaining accuracy even when
some of the data is missing, which makes it a useful tool for guessing missing values.
(3) Simple evaluation of feature contribution: Random forest makes it simple to
assess variable contribution. There are several methods for determining feature
relevance. To gauge how much the model’s accuracy declines when a particular
variable is removed, the Gini importance and mean drop in impurity (MDI) are
frequently utilized. A different significance metric is permutation importance,
often known as mean decrease accuracy (MDA). By randomly permuting the fea-
ture values in OOB samples, MDA can determine the average reduction in accuracy.

Key Challenges
(1) Process that takes a long time: Because random forest methods can handle big
data sets, they can make predictions that are more accurate. However, because
they must compute data for each decision tree, they can take a long time to process
data.
(2) More resources are needed: Because random forests analyze bigger data sets,
more resources are needed to store that data.
(3) More complex: When compared to a forest of decision trees, a single one’s
prediction is simpler to understand.
Numerous sectors have used the random forest algorithm to help them make better
business decisions. Examples of use cases are:
(4) Finance: This method is favored over others since it takes less time to handle
and pre-process data. It may be used to assess high-risk consumers for fraud and
issues with option pricing.
(5) Healthcare: The random forest approach is used in computational biology to
solve issues including classifying gene expression, finding biomarkers, and annotat-
ing sequences. Doctors can therefore estimate pharmacological reactions to certain
drugs.
(6) E-commerce: Cross-selling may be accomplished by using recommendation
engines.

33

Methods

Here, we use the random size search with a cross-validation approach to dis-
cover the best parameters, set the number of cross-validations to 5, and utilize
these parameters to construct a random forest regression model. The minimum
number of samples needed to split an internal node is set to [2, 5, 10], while the
minimum number of samples needed to be at a leaf node is set to [1, 2, 4]. We set
the number of trees in the forest to [100, 200, 300, 400, 500].

RandomizedSearchCV

We employ the Random Search with a cross-validation approach to determine the
ideal parameters for the Random Forest regression model:

The various kernel functions (Kernals) in SVMs and K values in KNN algorithms
are examples of so-called model settings, often known as hyperparameters of the
model. The number of hyperparameters, etc., is often limitless. The combination
of hyperparameters can be adjusted using a heuristic search approach, in addition,
to manually validating numerous pre-defined combinations of hyperparameters in a
constrained amount of time. Grid search is the name of this heuristic hyperparam-
eter search technique.

If there are only a few hyperparameters (three or four or fewer) while search-
ing for them, grid search, an exhaustive search method, can be used. However,
if we continue to utilize grid search and there are a lot of hyperparameters, the
search time would grow tremendously.

In order to find lower values, a random search strategy that randomly explores
tens or hundreds of points in the hyperparameter space has been developed. The
random search technique produces somewhat better results than the sparse grid
method, according to studies, and it is faster than the sparse grid method described
above.

While RandomizedSearchCV employs a technique very similar to the class Grid-
SearchCV, he does so by selecting a predetermined number of random combinations
of one random value for each hyperparameter rather than trying all possible possi-
bilities.

This technique has two benefits:
(1) The random search will examine 1000 possible values of each hyperparameter if
you run it 1000 times (instead of searching only a few values of each hyperparameter,
like the grid search).

34

Methods

(2) By adjusting the number of searches, you can simply manage how much compu-
tation goes into the hyperparameter search.

In reality, RandomizedSearchCV and GridSearchCV are identical; however, Ran-
domizedSearchCV samples the parameter space randomly, and for parameters with
continuous variables, it samples the parameters as a distribution. Grid search is
unable to accomplish this, and its ability to do so depends on the value chosen for
the n iter argument.

3.2 Deep Neural Network

Neural networks are a collection of algorithms that are intended to identify patterns
and are loosely based on the human brain. They categorize or group raw input to
understand sensory data using a form of machine perception. All real-world data,
including pictures, sounds, texts, and time series, must be converted into vectors
in order for them to detect the patterns, which are numerical and included within.

We can categorize and cluster data using neural networks. They may be viewed as a
layer of grouping and classification on top of the data you manage and store. They
aid in organizing unlabeled data into groups based on similarities between example
inputs, and when given a labeled training set, they categorize data. You might
conceive of deep neural networks as parts of broader machine-learning systems that
involve algorithms for reinforcement learning, classification, and regression (since
neural networks can also extract features that are supplied to other algorithms for
clustering and classification).

What defines a Neural Network?

The inner workings of biological brains serve as the basis for the construction
of neural networks. By sending input data through numerous layers of what are
known as perceptrons (think "neurons"), each of which transforms the input using
a different set of functions, these models mimic the actions of linked neurons. The
simplest component of a neural network, the perceptron, will be broken down in
this section.

35

Methods

𝑥#

𝑥!

𝑥$

𝑊!

𝑊"

𝑊#

+ f()

Inputs Weights Transfer
function

Activation
function

Figure 3.11: The structure of a perceptron

Scalar multiplication, a summation, and finally a transformation utilizing a unique
equation known as an activation function are the three primary mathematical
processes that commonly make up a perceptron (above). We may group several
perceptrons together to simulate a brain, which is known as a neural network, as
each perceptron represents a single neuron in the brain.

Input: Our features’ measurements make up the inputs.

Weights: Scalar multiplications are represented by weights. It is their responsi-
bility to evaluate the significance and directionality of each input. The transfer
function, the next part of the perceptron, will then get these values.

Transfer Function: Unlike the other components, the transfer function accepts a
variety of inputs. In order to apply the activation function, the transfer function
must merge many inputs into a single output value. Typically, this is accomplished
by adding up all of the transfer function’s inputs.

However, the value undergoes an activation function transformation before being
delivered as the perceptron’s final output.

The number from the transfer function will be changed into a value that dramatizes
the input using an activation function. The activation function is frequently non-
linear. The perceptron may be made more complicated by adding non-linearity,
which prevents the output from changing linearly with the inputs. Here are two
typical activation processes.

36

Methods

max(0,x)

1

1
x

Figure 3.12: Geometric representation of the RELU function

ReLU is a straightforward function that selects the maximum by comparing zero
with the input. In other words, any negative input results in zero, and positive
inputs have no impact. This is handy for reducing linearity without having to
perform any laborious computations or in circumstances where negative numbers
don’t make much sense.

1

x

0.51
1 + 𝑒$%

Figure 3.13: Geometric representation of the sigmoid function

The sigmoid function is effective in dividing values into several thresholds. It is
especially helpful for values like z-scores, where numbers close to the mean (zero)
should be carefully examined since a tiny change close to the mean may have a
huge impact on certain behavior, but where values far from the mean likely signal
the same thing about the data.

The input is made more dramatic by the activation function, which is a non-
linear function. In other words, inputs that are closer to zero tend to be more
impacted than ones that are far from zero. This will enable us to select more
defined decision limits.

The activation function is always the same since we choose it before training

37

Methods

our model. In the course of testing countless models, we do not toggle this parame-
ter. It only occurs with the weights.

Bias: Every perceptron uses the same input, which never changes. It is mul-
tiplied by the weight in the same way as the other inputs and serves to enable
independent up- and down-shifting of the value prior to the activation function.
Due to the fact that they are not required to additionally attempt to balance
the entire sum to be close to 0, the other weights—for the actual inputs, not the
bias—can be more precise.

𝑊&1

Bias

𝑥#

𝑥!

𝑥$

𝑊!

𝑊"

𝑊#

+ f()

Inputs Weights Transfer
function

Activation
function

Figure 3.14: The structure of a perceptron with bias

To be more specific, bias might shift graphs like the left graph to something like
the following graph:

Figure 3.15: The impact of bias

We’ve now created a model that imitates the brain’s neurons, we can create complex
multi-dimensional equations by altering a few weights. They can be summarized
by the following equation:

f (x0 · w0 + x1 · w1 + x2 · w2 + 1 · wB) (3.19)

38

Methods

From this point forward, every single green perceptron contains every element
we have seen thus far: inputs, bias, weights, transfer function, and an activation
function.

Multi-Layer Perceptrons

We only connect the output of one perceptron to the input of another to de-
pict a network of perceptrons. Many of these perceptrons are linked together in
chains that flow from one end to the other. This is referred to as a Multi-Layer
Perceptron (MLP), and as the name implies, there are several interconnected layers
of perceptrons in it. We will examine fully-connected MLPs for simplicity, in which
every perceptron in one layer is coupled to every perceptron in the following layer.

A layer is nothing more than a line of disconnected perceptrons. In an MLP,
perceptrons are connected to all other perceptrons in the layers above and below
them but not to any other perceptrons in the same layer. Let’s examine an MLP
that has two input values, two hidden layers, and a single output value. Say there
are two perceptrons in the first hidden layer and three in the second.

𝑥#

𝑥!

Input
layer

Hidden
layer1

Hidden
layer2

Output
layer

Figure 3.16: An MLP with two input values, 2 hidden layers, and an output of a
single value

Here, each perceptron will take in the inputs (arrows heading in the direction of
the circle), carry out the actions outlined in the previous section, and then advance
the output (arrow pointing out of the circle). This is repeated several times to
produce equations that are progressively more complicated while still taking the
same data into account repeatedly to provide reliable predictions. Because we are
unsure of the significance of the equations it chooses, the strategy we’re presenting
is sometimes referred to as a "black box" approach.

The layers between the input layer and the output layer are referred to as "hidden"
layers because, once the values are fed from the input, it is not beneficial to see

39

Methods

how they are converted until they leave the final output node. This is due to the
fact that our model’s performance is never assessed using these interim variables
(i.e. getting error values for predictions made on sample data). We may construct
equations that are even more complex than those produced by a single perceptron
by combining numerous of these perceptrons.

3.2.1 Fully Connected Neural Network
An information system called the fully-connected ANN is created by conceptually
abstracting, streamlining, and modeling the essential elements of the genuine neural
network in the human brain [26].

Input layer

Hidden layer

Output layer

Figure 3.17: Fully Connected Neural Network

The BP neural network is a multi-layer feedforward neural network that was trained
using the error backpropagation technique. It is presently the most popular fully-
connected ANN. Usually, a differentiable function, the transfer function utilized by
the BP neural network’s neurons may actualize any nonlinear mapping between
the input and the output. Consequently, a wide range of applications exists for the
BP neural network in pattern recognition, risk assessment, intelligent prediction,
etc. [27].

The BP neural network excels at multi-dimensional function mapping and can
classify patterns of any complexity. Its objective function is the square of the
network error, and the gradient descent method is used to get its least value [28].
This is how the calculations are done in detail: (1) Random values are used to
initialize the connection weight value and threshold. (2) The parameters chosen by
the input mode and output mode are used to calculate the output of each unit of

40

Methods

the hidden layer and the output layer. The ReLU is utilized in this work as the hid-
den layer’s activation function. The output layer’s activation function uses the Tanh.

The ReLU can be defined as:

f(x) = max(0, x) (3.20)

The Tanh can be defined as:

f(x) = ex − e−x

ex + e−x
(3.21)

The modification of the neuron threshold:

θk(t + 1) = θk(t) + ηtσk, (t = 1,2, . . . , p; k = 1,2, . . . , l) (3.22)

θj(t + 1) = θk(t) + ηtσj, (t = 1,2, . . . , p; j = 1,2, . . . , l) (3.23)

where θj and θk are the j − th node’s threshold values and the k − th node’s output
layer, respectively; σj and σk are the j − th node’s hidden layer errors and the
k − th node’s output layer errors, respectively. ηt is the t − th training iteration’s
learning rate.

The weight update formula is as follows:

ωjk(t + 1) = ωjk(t) + ∆ωjk(t), (t = 1,2, . . . , p) (3.24)

vij(t + 1) = vij(t) + ∆vij(t), (t = 1,2, . . . , p) (3.25)

where t is the total number of training iterations, vij is the updating of weight
values from the input layer to the hidden layer, and ωjk is the updating of weight
values from the hidden layer to the output layer.

To train the neural network, go back to step two and keep updating the learning
input mode until the number of training instances approaches the desired num-
ber. Figure 3.18 depicts the fundamental flow of the aforementioned computation
method.

41

Methods

Start

Based on random values, set the
connection weight value and threshold

Determine the output of each unit in
the hidden and output layers

Calculate each unit's output
error

Update the weights and thresholds and
compute the reverse error

Whether
the error
satisfies

the criteria?

Update
thresholds

and weights

No Store
thresholds

and weights

End

Yes

Figure 3.18: The working mechanism of a Fully Connected Neural Network

In this part, we built a fully connected neural network, which contains seven linear
layers, each of which is followed by batch normalization and ReLu. There are
thirteen features in the airfare dataset, so we set the number of neurons in the
input layer is thirteen. And the number of neurons in the hidden layer and output
layer are 1024 and 1 respectively. We set the batch size as 128. The performance
is as good as the random forest regression model’s.

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Fully Connected Neural Network

Figure 3.19: Fully Connected Neural Network

3.2.2 Convolutional Neural Network
Convolutional layers, pooling layers, and fully connected layers make up a con-
volutional neural network (CNN), which is often a feed-forward neural network.

42

Methods

Local connection, weight sharing, and pooling are the three structural features of
convolutional neural networks. Convolutional neural networks exhibit some degree
of translation, scaling, and rotation invariance as a result of these features. Con-
volutional neural networks contain fewer parameters as compared to feedforward
neural networks.

CNN network structure

A convolutional neural network (CNN) is often a feed-forward neural network
made up of fully connected, pooling, and convolutional layers. Three structural
traits of convolutional neural networks are local connection, weight sharing, and
pooling. Because of these features, convolutional neural networks exhibit some de-
gree of translation, scaling, and rotation invariance. Convolutional neural networks
have a smaller number of parameters than feedforward neural networks.

Input
Convolutional
Layer

Pooling
Layer

Convolutional
Layer

Pooling
Layer

Fully
Connected
Layer

Output

Figure 3.20: The composition of convolutional neural network

Convolution operation
Convolution is a powerful computer technology that is used by convolutional
neural networks. One-dimensional convolution or two-dimensional convolution is
frequently employed in signal processing or picture processing. It is important to
transform one-dimensional data into a two-dimensional format since the picture is
Convolution is enlarged. The two-dimensional convolution is defined as Y = W *
X where the filter is W and the input data is X.

Feature map
Each feature map may be utilized as a class of extracted image features. A feature
map is a feature that is obtained by the convolution of an image (or other feature
maps). Multiple distinct feature maps can be employed at each layer to better
reflect the features of the picture and enhance convolutional networks’ ability to
represent them.

43

Methods

1 2 3 4 5

6 7 8 9 0

-1 -2 -3 -4 -5

-6 -7 -8 -9 0

1 2 3 4 5

12
1 1 1

0 0 0

-1 -1 -1

Input OutputKernel

* =

Figure 3.21: The working mechanism of a kernel

The feature map is the actual picture in the input layer. If it is a grayscale
picture, there is a feature map; if it is a color image, there are feature maps of
three RGB color channels; and if it is a grayscale image, there is a feature map;
the depth of the input layer is D=1.

Convolutional layers
Local connectivity is the first characteristic. A locally connected network is created
when each neuron in the convolutional layer, which is considered to be the Lth
layer, is only linked to other neurons in a local window in the following layer, the
L-1 layer. All of the neurons in the Lth layer share the same convolution kernel as
a parameter. The sharing of weights is the second characteristic. Weight sharing
may be thought of as a convolution kernel that only extracts one particular local
feature from the input data, necessitating the usage of several distinct convolution
kernels if you wish to extract other features.

The completely connected layer (a) in the fully connected neural network is seen in
the image below. The completely linked layer’s weight matrix has a large number
of parameters, and training effectiveness will be low. The convolutional layer of
the convolutional neural network is (b), as well. The weights are the same on
connections of the same color in the convolutional layer, which significantly reduces
the number of parameters in the weight matrix that may be produced in this fashion.

Pooling layer
The pooling layer’s job is to do feature selection, cut down on the number of
features, and subsequently cut down on the number of parameters.

The number of connections in the network can be greatly reduced by the convo-
lutional layer, but the number of neurons in the feature map group is not much

44

Methods

affected. If a classifier is added after, its input dimension is still quite high and it
is simple to overfit. After the convolutional layer, a pooling layer can be added to
minimize the feature dimension and prevent overfitting in order to address this issue.

Downsampling each region to obtain a result that represents this region as a
whole is referred to as pooling.

There are two types of pooling functions that are frequently used: (1) Max Pooling,
which chooses the maximal activity value of all the neurons in an area to serve
as the region’s representation; and (2) Average Pooling, also known as Mean Pooling.

In this part, we built a convolutional neural network, which contains seven convo-
lutional layers, each of which is followed by batch normalization and ReLu. There
are thirteen features in the airfare dataset, so we set the number of neurons in the
input layer is thirteen. And the number of neurons in the hidden layer and output
layer are 1024 and 1 respectively. We set the batch size as 128.

C
on

vo
lu

tio
na

l l
ay

er

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

C
on

vo
lu

tio
na

l l
ay

er

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Convolutional Neural Network

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

Figure 3.22: Convolutional Neural Network

3.2.3 Transformer
A Transformer is a model architecture that does not use recurrence and instead
draws connections between input and output using an attention method. Prior
to Transformers, the dominant sequence transduction models were based on com-
plicated recurrent or convolutional neural networks with just an encoder and a
decoder, as represented in Figure 3.23’s left and right halves, respectively. The

45

Methods

Transformer similarly has an encoder and decoder, but by foregoing recurrence in
favor of attention mechanisms, it may achieve substantially greater parallelization
than RNNs and CNNs.

Figure 3.23: Architecture of a Transformer model.

Encoder
The encoder is made up of N = 6 identical layers. Each layer is divided into two
sub-layers. The first is a multi-head self-attention mechanism, while the second is
a basic, fully linked feed-forward network that is location-wise. Following layer nor-
malization [29], we use a residual connection [30] around each of the two sub-layers.
That is, the output of each sub-layer is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the sub-own layer’s function. To assist these residual connections,
all sub-layers and embedding layers in the model give outputs with dimension
dmodel = 512.

46

Methods

Decoder
The decoder is also made up of a stack of N = 6 identical layers. The decoder
inserts a third sub-layer, which conducts multi-head attention over the encoder
stack’s output, in addition to the two sub-layers in each encoder layer. We use
residual connections surrounding each sub-layer, similar to the encoder, followed by
layer normalization. We additionally change the decoder stack’s self-attention sub-
layer to prevent positions from attending to the following positions. This masking,
along with the fact that the output embeddings are offset by one place, ensures
that predictions for position i can only rely on known outputs at locations less than i.

Attention
A query and a collection of key-value pairs are mapped to output by an attention
function, where the query, keys, values, and output are all vectors. The result is
generated as a weighted sum of the values, with the weight allocated to each value
determined by the query’s compatibility function with the relevant key.

Multi-Head Attention
Instead of executing a single attention function with dmodel -dimensional keys, val-
ues, and queries, we discovered that linearly projecting the queries, keys, and values
h times using distinct, learned linear projections to dk, dk and dv dimensions was
more advantageous. We then apply the attention function in parallel on each
of these projected versions of queries, keys, and values, providing dv-dimensional
output values. These are concatenated and projected again, yielding the final
values shown in Figure 3.24.

Linear

Concat

Scaled Dot-Product Attention

Linear Linear Linear

V K Q

h

Figure 3.24: Multi-Head Attention

47

Methods

The model may attend to input from distinct representation subspaces at different
points using multi-head attention. Averaging prevents this with a single attention
head.

MultiHead(Q, K, V) = Concat (head1, . . . , head h) W O (3.26)

where head i = Attention
(
QW Q

i , KW K
i , V W V

i

)

Where the projections are parameter matrices W Q
i ∈ Rdmodel ×dk , W K

i ∈ Rdmodel ×dk , W V
i ∈

Rdmodel ×dv and W O ∈ Rhdv×dmodel

In this thesis, we design a Transformer model which has 3-layer self-attention
layers and set the number of heads as 4. Since our input data do not contain
sequential information, we replicate it to a dimension of 16 to simulate series data.
Next, we apply linear embedding to input data to enrich the features from 13 to
256. Then we feed these sequential high-dimensional features into the Transformer
encoder, which is followed by a global average pooling to get the global features
among the sequential features. Finally, we apply two fully connected layers, with
the number of output nodes as 256 and 1, to get the final prediction.

3.2.4 Beyesian Neural Network

Bayesian neural networks are a popular type of neural network due to their ability
to quantify the uncertainty in their predictive output.

With standard neural networks, the weights between the different layers of the
network take single values. In a Bayesian neural network, the weights take on
probability distributions. The process of finding these distributions is called
marginalization. One important factor for training these networks is having a large
enough set of training data to produce accurate probability distributions. This
makes them more robust and allows them to generalize better with less overfitting.

48

Methods

0.1 0.5 0.2

0.7 0.90.1 0.2 0.4

Artificial neural network

point estimates for weight

Bayesian neural network

weights modeled as distributions

Figure 3.25: Differences between Artificial neural network and Bayesian neural
network

Variational Inference

We define y = f(x) as a function that estimates the supplied inputs {x1, . . . , xN}
and their related outputs {y1, . . . , yN} and gives a predicted output. A prior distri-
bution is utilized across the space of functions p(f) in Bayesian inference. This
distribution reflects our prior assumption about which functions are most likely to
have yielded our data.

To capture the process by which a given function observation is formed, a likeli-
hood is defined as p(Y | f, X). To calculate the posterior distribution given our
dataset, we implement the Bayes rule: p(Y | f, X). By integrating over all potential
functions f , the new output for a new input point x∗ may be anticipated.

p (y∗ | x∗, X, Y) =
∫

p (y∗ | f ∗) p (f ∗ | x∗, X, Y) df ∗ (3.27)

Because of the integration sign, equation 3.27 is unsolvable. We may approximate
it by conditioning the model on a finite collection of random variables w. However,
it is predicated on a modeling assumption that the model is dependent solely on
these variables, and we use them as statistics in our approximation model. After
that, the predictive distribution for a new input point x∗ is given by:

p (y∗ | x∗, X, Y) =
∫

p (y∗ | f ∗) p (f ∗ | x∗, w) p(w | X, Y)df ∗dw (3.28)

However, the distribution p(w | X, Y) remains difficult, and we must approximate
it using a calculated variational distribution q(w). The estimated distribution
should be as similar to the posterior distribution generated from the original model

49

Methods

as feasible. As a result, we minimize the Kullback-Leibler (KL) divergence, which
is an intuitive measure of similarity between two distributions: The approximate
predictive distribution is obtained by KL(q(w)∥p(w | X, Y)).

q (y∗ | x∗) =
∫

p (y∗ | f ∗) p (f ∗ | x∗, w) q(w)df ∗dw (3.29)

Minimizing the Kullback-Leibler divergence corresponds to increasing the log
evidence lower bound.

KLVI :=
∫

q(w)p(F | X, w) log p(Y | F)dFdw − KL(q(w)∥p(w)) (3.30)

with relation to the variational parameters that define q(w). This is referred to as
variational inference, and it is a standard strategy in Bayesian modeling.

Maximizing the KL divergence between the posterior and the prior over w produces
a variational distribution that learns a good representation from the data (as
determined by log-likelihood) and is closer to the prior distribution. In other words,
it can help to avoid overfitting.

Local Reparametrisation Trick

One of the most general-purpose tools in mathematical statistics is the capac-
ity to rephrase statistical problems in an equivalent but different form, or to
reparameterize them. The type of reparameterization when the global uncertainty
in the weights is transformed into a form of local uncertainty which is independent
across cases is known as the local reparameterization trick. An alternate estimator
with Cov [Li, Lj] = 0 is used, such that the variance of the stochastic gradients
scales as 1/M . The new estimator is computationally efficient since it samples the
intermediate variables rather than ϵ directly, but just f(ϵ), which affects LSGVB

D (ϕ).
As a result of translating the source of global noise to local noise (ϵ → f(ϵ)), a
local reparameterization may be used to generate a statistically efficient gradient
estimator.

A simple example will help to understand the technique: We assume an input(X) of
a random uniform function with a range of -1 to +1 and an output(Y) of a random
normal distribution with mean X and standard deviation δ. The Mean Squared
Loss is defined as (Y − X)2. The issue arises during the backpropagation of the
random normal distribution function. We reparameterize as we try to propagate
across a stochastic node by adding X to the random normal function output and
multiplying by δ. The model’s behavior is unaffected by moving parameters outside
the normal distribution.

50

Methods

There are several benefits of adopting Bayesian neural networks.
(1) They are more resilient and generalizable than other neural networks.
(2) They can quantify the uncertainty in their predicted output.
(3) They may be utilized for a wide range of practical applications.

There are certain drawbacks to utilizing Bayesian neural networks, which we
will now go through.
(1) They can be more difficult to train than other neural networks and need an
understanding of probability and statistics.
(2) They can be slower to converge than other neural networks and frequently
require more data. Because the network’s weights are distributions rather than
single values, more data is necessary to correctly predict the weights.

In this part, we built a bayesian fully connected neural network, which contains
two bayesian layers and five linear layers, each of which is followed by batch nor-
malization and ReLu. There are thirteen features in the airfare dataset, so we set
the number of neurons in the input layer is thirteen. And the number of neurons
in the hidden layer and output layer are 1024 and 1 respectively. We set the batch
size as 128.

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Li
ne

ar
 la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Bayesian Fully Connected Neural Network

B
ay

es
ia

n
la

ye
r

B
ay

es
ia

n
la

ye
r

Figure 3.26: Bayesian Fully Connected Neural Network

Meanwhile, we built a Bayesian Convolutional Neural Network, which contains
one bayesian layer and six convolutional layers, each of which is followed by batch
normalization and ReLu. There are thirteen features in the airfare dataset, so
we set the number of neurons in the input layer is thirteen. And the number of
neurons in the hidden layer and output layer are 1024 and 1 respectively. We set
the batch size to 128.

51

Methods

C
on

vo
lu

tio
na

l l
ay

er

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

B
ay

es
ia

n
la

ye
r

B
at

ch
 n

or
m

al
iz

at
io

n

R
eL

u

Bayesian Convolutional Neural Network

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

C
on

vo
lu

tio
na

l l
ay

er

Figure 3.27: Bayesian Convolutional Neural Network

52

Chapter 4

Experiments

This chapter first introduces the experimental data set and preprocesses the data in
a standardized manner. Subsequently, the factors that have an influence on future
airline ticket prices are explored in terms of their own price series and external
influence factors respectively, and the important characteristics of the random
forest regressor model, KNN regressor model, ridge regressor model are used to
screen the variables and provide good data support for the subsequent research At
the same time, a neural network model was constructed to accomplish the task of
predicting airline ticket prices.

4.1 Dataset

4.1.1 Flight Price Dataset
The dataset used in this paper is from Kaggle, which contains a total of 10,683
routes between these cities within India: New Delhi, Bangalore, Cochin, Kolkata,
Hyderabad, and Delhi from March 2019 to June 2019, and from this data, each
raw data contains 11 fields of information, as shown in the chart.

The various features of the cleaned dataset are explained below:
(1) Airline: The name of the airline company is stored in the airline column. It is a
categorical feature having 6 different airlines.
(2) Flight: The flight stores information regarding the plane’s flight code. It is a
categorical feature.
(3) Source City: City from which the flight takes off. It is a categorical feature
having 6 unique cities.
(4) Departure Time: This is a derived categorical feature obtained created by
grouping time periods into bins. It stores information about the departure time

53

Experiments

Table 4.1: An example of data information in our adopted flight ticket dataset.

Airline Date_of_Journey Source Destination Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price
IndiGo 24/03/2019 Banglore New Delhi BLR → DEL 22:20 01:10 22 Mar 2h 50m non-stop No info 3897

Air India 01/05/2019 Kolkata Banglore CCU → IXR → BBI → BLR 05:50 13:15 7h 25m 2 stops No info 7662
Jet Airways 09/06/2019 Delhi Cochin DEL → LKO → BOM → COK 09:25 04:25 10 Jun 19h 2 stops No info 13882

IndiGo 12/05/2019 Kolkata Banglore CCU → NAG → BLR 18:05 23:30 5h 25m 1 stop No info 6218
IndiGo 01/03/2019 Banglore New Delhi BLR → NAG → DEL 16:50 21:35 4h 45m 1 stop No info 13302

SpiceJet 24/06/2019 Kolkata Banglore CCU → BLR 09:00 11:25 2h 25m non-stop No info 3873
Jet Airways 12/03/2019 Banglore New Delhi BLR → BOM → DEL 18:55 10:25 13 Mar 15h 30m 1 stop In-flight meal not included 11087
Jet Airways 01/03/2019 Banglore New Delhi BLR → BOM → DEL 08:00 05:05 02 Mar 21h 5m 1 stop No info 22270
Jet Airways 12/03/2019 Banglore New Delhi BLR → BOM → DEL 08:55 10:25 13 Mar 25h 30m 1 stop In-flight meal not included 11087

Multiple carriers 27/05/2019 Delhi Cochin DEL → BOM → COK 11:25 19:15 7h 50m 1 stop No info 8625
Air India 01/06/2019 Delhi Cochin DEL → BLR → COK 09:45 23:00 13h 15m 1 stop No info 8907
IndiGo 18/04/2019 Kolkata Banglore CCU → BLR 20:20 22:55 2h 35m non-stop No info 4174

Air India 24/06/2019 Chennai Kolkata MAA → CCU 11:40 13:55 2h 15m non-stop No info 4667
Jet Airways 09/05/2019 Kolkata Banglore CCU → BOM → BLR 21:10 09:20 10 May 12h 10m 1 stop In-flight meal not included 9663

IndiGo 24/04/2019 Kolkata Banglore CCU → BLR 17:15 19:50 2h 35m non-stop No info 4804
Air India 03/03/2019 Delhi Cochin DEL → AMD → BOM → COK 16:40 19:15 04 Mar 26h 35m 2 stops No info 14011
SpiceJet 15/04/2019 Delhi Cochin DEL → PNQ → COK 08:45 13:15 4h 30m 1 stop No info 5830

Jet Airways 12/06/2019 Delhi Cochin DEL → BOM → COK 14:00 12:35 13 Jun 22h 35m 1 stop In-flight meal not included 10262
Air India 12/06/2019 Delhi Cochin DEL → CCU → BOM → COK 20:15 19:15 13 Jun 23h 2 stops No info 13381

Jet Airways 27/05/2019 Delhi Cochin DEL → BOM → COK 16:00 12:35 28 May 20h 35m 1 stop In-flight meal not included 12898
GoAir 06/03/2019 Delhi Cochin DEL → BOM → COK 14:10 19:20 5h 10m 1 stop No info 19495

Air India 21/03/2019 Banglore New Delhi BLR → COK → DEL 22:00 13:20 19 Mar 15h 20m 1 stop No info 6955

and has 6 unique time labels.
(5) Stops: A categorical feature with 3 distinct values that stores the number of
stops between the source and destination cities.
(6) Arrival Time: This is a derived categorical feature created by grouping time
intervals into bins. It has six distinct time labels and keeps the information about
the arrival time.
(7) Destination City: City where the flight will land. It is a categorical feature
having 6 unique cities.
(8) Class: A categorical feature that contains information on seat class; it has two
distinct values: Business and Economy.
(9) Duration: A continuous feature that displays the overall amount of time it takes
to travel between cities in hours.
(10) Days Left: This is a derived characteristic that is calculated by subtracting
the trip date from the booking date.
(11) Price: The target variable stores information on the ticket price.

4.1.2 Preprocessing

Missing data imputation: To facilitate the study, the terms are further treated
in this paper. In the real world, it is very common for data to contain missing values
because some information is not available or the data is not recorded, omitted, or
lost due to human factors. However, when training a dataset with many missing
values, the presence of missing values can greatly affect the performance of the
machine learning model.

54

Experiments

Table 4.2: An example of the data information after preprocessing.

Airline Source Destination Route Additional_Info Duration Total_Stops Journey_day Journey_month Dep_hour Dep_min Arrival_hour Arrival_min Price
3 0 5 18 3 170 0 24 3 22 20 1 10 3897
1 3 0 84 3 445 2 1 5 5 50 13 15 7662
4 2 1 118 3 1140 2 9 6 9 25 4 25 13882
3 3 0 91 3 325 1 12 5 18 5 23 30 6218
3 0 5 29 3 285 1 1 3 16 50 21 35 13302
7 3 0 64 3 145 0 24 6 9 0 11 25 3873
4 0 5 5 1 930 1 12 3 18 55 10 25 11087
4 0 5 5 3 1265 1 1 3 8 0 5 5 22270
4 0 5 5 1 1530 1 12 3 8 55 10 25 11087
5 2 1 104 3 470 1 27 5 11 25 19 15 8625
1 2 1 103 3 795 1 1 6 9 45 23 0 8907
3 3 0 64 3 155 0 18 4 20 20 22 55 4174
1 1 4 127 3 135 0 24 6 11 40 13 55 4667
4 3 0 66 1 730 1 9 5 21 10 9 20 9663
3 3 0 64 3 155 0 24 4 17 15 19 50 4804
1 2 1 97 3 1595 2 3 3 16 40 19 15 14011
7 2 1 123 3 270 1 15 4 8 45 13 15 5830
4 2 1 104 1 1355 1 12 6 14 0 12 35 10262
1 2 1 105 3 1380 2 12 6 20 15 19 15 13381
4 2 1 104 1 1235 1 27 5 16 0 12 35 12898
2 2 1 104 3 310 1 6 3 14 10 19 20 19495
1 0 5 17 3 920 1 21 3 22 0 13 20 6955

Unit conversion: In order to handle the data well, we convert flight duration
hours into minutes; split the date of the journey into journey day and journey
month; split the departure time and arrival time into hours and minutes.

Then, in the analysis of additional information, we find that the percentage of
"Change airports", "Business class", "2 Long layover", "Red-eye flight", and "1 Short
layover" are few, and we call them collectively as " other".

Categorical data encoding. Finally, in order to use the machine learning model,
we first convert categorical data into numerical. now that the data preparation
work is done, we will build machine learning models.

4.2 Evaluation Metrics

4.2.1 Root mean square error
One of the methods most frequently used to assess the accuracy of forecasts is
the root mean square error (RMSE). It illustrates the Euclidean distance between
measured true values and forecasts. For each data point, determine the residual
(difference between forecast and reality), its norm, and its standard deviation to
calculate the residual mean square error (RMSE). Due to the fact that it requires
and utilizes real measurements at each projected data point, RMSE is frequently
utilized in supervised learning applications.

55

Experiments

The standard deviation is a gauge of how evenly distributed a set of numbers
is. The square root of the variance serves as its formula. The average of the squared
deviations from the mean is known as a variance. In the standard deviation formula
below, "xi" stands for the number, "µ" for the number’s average, and "N" stands
for the total number of values.

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (4.1)

Data points’ distance from the regression line is gauged by residuals. By deducting
the anticipated value from the actual value, we may calculate residuals, which are
nothing more than prediction errors.

X

Y

Predicted Value h(x)

Actual Value y

Figure 4.1: The geometrical meaning of residuals.

So instead of using the square root of the variance to get the RMSE, we will use
the square root of the average of the squared residuals. Calculate the residual
(difference between forecast and truth) for each data point, together with its norm,
mean, and square root in order to determine the root-mean-square error (RMSE).
Due to the fact that it requires and utilizes real measurements at each projected
data point, RMSE is frequently utilized in supervised learning applications. A
number of 0 (nearly never attained in practice) would represent a perfect fit to the
data, and RMSE is always non-negative. A smaller RMSE is often preferable to a
greater one. However, because the measure depends on the size of the numbers
used, comparisons across other types of data would be incorrect. The average of
the squared errors’ square root is the RMSE. Each error has an impact on RMSE
that is proportional to the amount of the squared error; as a result, greater errors
have an outsized influence on RMSE. RMSE is hence vulnerable to outliers. [31][32]

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (4.2)

56

Experiments

When evaluating a model’s performance in machine learning, whether during
training, cross-validation, or monitoring after deployment, it is very beneficial to
have a single number. One of the most used metrics for this is the root mean
square error. It is an appropriate scoring method that is simple to comprehend
and consistent with some of the most widely used statistical presumptions.

4.2.2 Mean absolute error

A model assessment statistic used with regression models is mean absolute error.
The average of the absolute values of each prediction error over all test set occur-
rences is the mean absolute error of a model with respect to the test set. The
difference between the instance’s real value and the expected value represents each
prediction mistake.

mae =
∑n

i=1 abs (yi − λ (xi))
n

(4.3)

where yi is the true target value for test instance yi , λ(xi) is the predicted target
value for test instance xi , and n is the number of test instances.

The smaller the MAE, the better your model is in performing your (regression)
analysis. A model is perfect if its mean absolute error is zero. In other words, the
actual and anticipated values are identical for all observations.

The MAE has an advantage over other metrics in that its result is in the same
units as the relevant variable. So, if your mean absolute error is 2, the absolute
difference between the actual value and the anticipated value is 2 units.

The MAE’s potential drawback is that both low and high mistakes are given
equal weight. In other words, a difference of 1 unit is just as significant as a
difference of 5 units between the actual and anticipated values. Use the Root Mean
Squared Error (RMSE) if larger errors should be punished more severely than
smaller ones.

4.2.3 Mean absolute percentage error

The mean absolute percentage error (MAPE), also known as mean absolute percent-
age deviation (MAPD), is a measure of predicting accuracy used in statistics, such
as trend estimation, and is also used as a Loss function in Machine Learning. The
MAPE (Mean Absolute Percent Error) calculates the error magnitude in percentage
terms. It is determined as the average of the unsigned percentage errors, as seen in

57

Experiments

the following example:

MAPE = 100
n

n∑
t=1

|At − Ft|
At

%, (4.4)

where At are actuals and Ft corresponding forecasts or predictions.

It reflects the average of each entry’s absolute percentage inaccuracy, indicat-
ing how accurate the anticipated amounts were in relation to the actual values.
MAPE is sometimes useful for studying bigger collections of data, although it is
impossible to calculate the MAPE of datasets with zero values. This is due to the
computation requiring division by zero, which is not feasible. MAPE is a simple
statistic that reflects the average deviation between anticipated and actual values
as 10%, regardless of whether the deviation was positive or negative. There is,
however, no industry standard for what constitutes a good MAPE.

4.2.4 Coefficient of determination R2

The data points’ dispersion around the fitted regression line is measured using
R-squared. Multiple regression is also known as the coefficient of determination or
the coefficient of multiple determination. Higher R-squared values for the same
data set indicate less discrepancy between the fitted values and the observed data.

The amount of variance in the dependent variable that a linear model can ex-
plain is measured by its R-squared.

R2 = Variance explained by the model
Total variance (4.5)

R-squared ranges from 0% to 100% always:
(1) A model with a 0% explanatory power does not account for any variation in the
response variable around its mean. Both the dependent variable and the regression
model are predicted by the dependent variable’s mean.
(2) 100% denotes a model that accounts for all of the response variable’s variation
around its mean.

The better the regression model matches your observations, typically, the big-
ger the R2. Plotting the fitted values against the observed values will show how
R-squared values indicate the dispersion around the regression line.

58

Experiments

Figure 4.2: An illustration of the coefficient of determination R2.

The regression model on the left has an R-squared of 15%, whereas the model on
the right has an R-squared of 85%. The data points are nearer the regression line
when a regression model explains more variation. An R2 of 100% is unheard of in
regression models used in real-world applications. The fitted values are then equal
to the observed values, and all of the observations lie precisely on the regression
line.

4.3 Implementation Details
We implement a total of 12 methods for a thorough comparison. Specifically, we
include 7 traditional machine learning regression algorithms (Lasso Regression,
Ridge Regression, Support Vector Regression, K-Nearest Neighbors, XGBoost,
Decision Tree, Random Forest) and 5 deep neural network methods (Transformer,
Fully Connected Network, Bayesian Fully Connected Network, Convolutional Neural
Network, Bayesian Convolutional Neural Network). To keep a fair comparison,
we split the dataset into 70% training data and 30% test data. We use the same
training and test data for all the implemented methods. We will introduce the
implementation details of these two kinds of methods respectively.

Machine learning methods: The traditional machine learning regression meth-
ods are implemented based on the framework of scikit-learn. We train our model
on normal CPUs and the training takes only several minutes for all the methods.
The settings of hyper-parameters are given in last chapter.

Deep Learning methods: The deep learning methods are implemented based
on the framework of Pytorch. To optimize the parameters of our network, we adopt
the Adam solver with batch size 128. We set the learning rate as 0.01. We train our
model on one NVIDIA GeForce GTX 3090 GPU. It takes about half an hour to get

59

Experiments

the Convolutional Neural Network model and the Fully Connected Network model.
It takes about one hour to get the Bayesian model and Transformer model. The
setting of hyper-parameters is introduced below. For Bayesian neural networks, we
set the number of ensembles during training as 5, the weight of KL loss as 2 × 10−5,
and the number of ensembles during testing as 128.

4.4 Experimental Results

4.4.1 Comparison of different methods
Table 4.3 shows the numerical results of mean squared error(RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and coefficient of deter-
mination R2 among different methods. Specifically, we implement representative
traditional machine learning methods (Lasso Regression, Ridge Regression, Support
Vector Regression, K-Nearest Neighbors, XGBoost, Decision Tree, Random Forest)
and deep neural networks (Transformer, Fully Connected Network, Bayesian Fully
Connected Network, Convolutional Neural Network, Bayesian Convolutional Neural
Network).

Table 4.3: Comparison of different methods on RMSE, MAE, MAPE, and R2.
The best two results are highlighted in red and blue.

Methods RMSE (↓) MAE (↓) MAPE (↓) R2 (↑)
Lasso Regression 3299.82 2396.99 31.96% 0.466
Ridge Regression 3289.24 2407.41 32.02% 0.470
Support Vector Regression 3167.65 1913.42 20.70% 0.508
K-Nearest Neighbors 2902.66 1690.64 18.34% 0.587
XGBoost 1567.57 749.70 8.76% 0.880
Decision Tree 1937.03 704.95 8.10% 0.816
Random Forest 1566.37 645.78 7.57% 0.880
Transformer 1733.29 835.79 10.18% 0.853
Fully Connected Network 1564.42 710.15 8.15% 0.880
Bayesian FCN (ours) 1491.36 698.53 8.04% 0.891
Convolutional Neural Network 1486.25 756.20 8.82% 0.892
Bayesian CNN (ours) 1414.51 749.70 8.81% 0.902

It can be observed that for traditional machine learning methods, Decision
Tree, XGBoost, and Random Forest achieve significantly better performance than
Lasso Regression, Ridge Regression, Support Vector Regression, and KNN. Besides,
Random Forest achieves the best performance in all metrics among all traditional
machine learning methods.

60

Experiments

For the deep learning-based methods, the performance of Fully Connected
Network, Bayesian FCN, Convolutional Neural Network, and Bayesian CNN achieve
better performance than all traditional methods in RMSE and R2. We must
highlight that with our proposed Bayesian layers, the performance of CNN and
FCN can be both improved. Although Transformer is a recently popular method
in various fields, the performance is the worst among all deep learning methods,
which means it is not a ideal candidate for such an airfare prediction task. Besides,
it should be noticed that Random Forest, as a traditional method, still achieves the
best performance in MAE and MAPE among all the methods, which means the
traditional machine learning methods is still playing an important role in our task.

4.4.2 Ablation studies
In order to investigate how much each input feature can affect the final prediction
effectively and efficiently, we do ablation studies by removing each input feature
respectively. We give the RMSE and MAE results of Random Forest and Convolu-
tional Neural Networks.

From the data in the table below, we can see that after removing some features, the
regression performance becomes better, such as "Route" and "Duration". However,
for other features, the performance after deleting them is not as good as retaining
all features. In this paper, we consider the case of retaining all features.

4.4.3 Running time comparisons
We also give comparisons of running time for different methods. Since the tradi-
tional methods and deep learning methods are run on CPU and GPU separately,
we also give the results separately.

Table 4.5 shows the running times of different machine learning methods. From
the data in the table, we can see that the Decision Tree Regression Model runs the
fastest, and the Random Forest Regression Model takes the longest time.

Table 4.6 shows the running time of different deep learning methods. From the
data in the table, we can see that the Fully Connected Network runs the fastest and
has the least number of parameters; the Bayesian Convolutional Neural Network
takes the longest time and has the largest number of parameters.

61

Experiments

Table 4.4: Ablation studies on input features. We give the RMSE and MAE
results of Random Forest and Convolutional Neural Network.

Removed features Random Forest CNN
RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

Airline 1808.48 817.58 1865.21 908.81
Source 1563.90 647.16 1504.47 801.58
Destination 1567.20 670.60 1512.64 737.11
Route 1567.20 670.60 1465.86 734.33
Additional info 1934.81 1106.53 2076.99 1290.78
Duration 1330.44 609.59 1427.72 744.00
Total stops 1565.36 665.47 1722.59 817.62
Journey day 2350.63 1095.24 2270.98 1164.65
Journey month 1859.17 1011.80 1854.76 1083.05
Departure hour 1542.54 654.78 1509.71 774.45
Departure minutes 1588.30 676.78 1512.44 772.68
Arrival hour 1579.16 649.57 1479.75 823.71
Departure minutes 1558.20 651.00 1576.35 770.87
All features included 1566.37 645.78 1486.25 756.20

Table 4.5: The running time comparison of different machine learning methods.

Methods Time Per Sample [ms]
Lasso Regression 0.10
Ridge Regression 0.10
Support Vector Regression 0.47
K-Nearest Neighbors 0.28
XGBoost 0.94
Decision Tree 0.04
Random Forest 4.56

Table 4.6: The comparisons of running time, MACs, and number of parameters
of different deep learning methods.

Methods Time Per Sample [ms] #Parameters
Transformer 1.22 26.3
Fully Connected Network 0.45 5.28
Bayesian FCN 0.83 5.29
Convolutional Neural Network 1.10 21.0M
Bayesian CNN 11.03 23.1M

62

Chapter 5

Conclusions

In this thesis, we did a systematic comparison of traditional machine learning
methods (e.g., Ridge Regression, Lasso Regression, K-Nearest Neighbor, XG-
Boost, Decision Tree, and Random Forest) and deep learning methods (e.g., Fully
Connected Networks, Convolutional Neural Networks) on the problem of airfare
prediction. We proposed a Bayesian neural network for airfare prediction, which
is the first method that utilizes Bayesian Inference for the airfare prediction task.
We evaluate the performance of different methods on an open dataset of 10,683
domestic routes in India from March 2019 to June 2019. The experimental results
show that deep learning-based methods achieve better results than traditional
methods in RMSE and R2, while Bayesian neural networks can further improve
the performance.

This thesis can be further extended for future work. First, the adopted pub-
lic dataset only contains limited data, which hindered the performance of neural
networks. It will be more worthwhile to collect a larger and wider dataset to explore
the potential of deep neural networks. Second, it will be interesting to utilize the
time-series information to make a better prediction. Third, it is promising to design
a special network to better capture useful features and information from the given
data.

63

Bibliography

[1] Tianyi Wang, Samira Pouyanfar, Haiman Tian, Yudong Tao, Miguel Alonso,
Steven Luis, and Shu-Ching Chen. «A framework for airfare price prediction:
a machine learning approach». In: 2019 IEEE 20th international conference
on information reuse and integration for data science (IRI). IEEE. 2019,
pp. 200–207 (cit. on pp. 4, 6).

[2] Megan S Ryerson and Hyun Kim. «Integrating airline operational practices
into passenger airline hub definition». In: Journal of Transport Geography 31
(2013), pp. 84–93 (cit. on p. 4).

[3] Hojong Baik, Antonio A Trani, Nicolas Hinze, Howard Swingle, Senanu
Ashiabor, and Anand Seshadri. «Forecasting model for air taxi, commercial
airline, and automobile demand in the United States». In: Transportation
Research Record 2052.1 (2008), pp. 9–20 (cit. on p. 4).

[4] William Groves and Maria Gini. «Optimal airline ticket purchasing using
automated user-guided feature selection». In: Twenty-Third International
Joint Conference on Artificial Intelligence. 2013 (cit. on p. 4).

[5] Zhenbang Wang. «RWA: A Regression-based Scheme for Flight Price Predic-
tion». In: (2020) (cit. on p. 4).

[6] Kristopher S Gerardi and Adam Hale Shapiro. «Does competition reduce
price dispersion? New evidence from the airline industry». In: Journal of
Political Economy 117.1 (2009), pp. 1–37 (cit. on p. 5).

[7] Tanisha Patel et al. «FLIGHT FARE PREDICTION». In: (2021) (cit. on
p. 5).

[8] Manolis Papadakis. «Predicting Airfare Prices». In: (2014) (cit. on p. 6).
[9] Jun Lu. «Machine learning modeling for time series problem: Predicting flight

ticket prices». In: arXiv preprint arXiv:1705.07205 (2017) (cit. on p. 6).
[10] Oren Etzioni, Rattapoom Tuchinda, Craig A Knoblock, and Alexander Yates.

«To buy or not to buy: mining airfare data to minimize ticket purchase
price». In: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining. 2003, pp. 119–128 (cit. on p. 6).

64

BIBLIOGRAPHY

[11] Qiqi Ren. «When to Book: Predicting Flight Pricing». In: Standford university
() (cit. on p. 6).

[12] Selim BUYRUKOĞLU and Yıldıran YILMAZ. «An Approach for Airfare
Prices Analysis with Penalized Regression Methods». In: Veri Bilimi 4.2 (),
pp. 57–61 (cit. on p. 6).

[13] Ruixuan Ren, Yunzhe Yang, and Shenli Yuan. «Prediction of airline ticket
price». In: University of Stanford (2014) (cit. on p. 6).

[14] Tim Janssen, T Dijkstra, Saiden Abbas, and AC van Riel. «A linear quantile
mixed regression model for prediction of airline ticket prices». In: Radboud
University (2014) (cit. on p. 6).

[15] Till Wohlfarth, Stéphan Clémençon, François Roueff, and Xavier Casellato. «A
data-mining approach to travel price forecasting». In: 2011 10th International
Conference on Machine Learning and Applications and Workshops. Vol. 1.
IEEE. 2011, pp. 84–89 (cit. on p. 7).

[16] Han-Chen Huang. «A hybrid neural network prediction model of air ticket
sales». In: Telkomnika Indonesian Journal of Electrical Engineering 11.11
(2013), pp. 6413–6419 (cit. on p. 7).

[17] Konstantinos Tziridis, Th Kalampokas, George A Papakostas, and Kostas I
Diamantaras. «Airfare prices prediction using machine learning techniques».
In: 2017 25th European Signal Processing Conference (EUSIPCO). IEEE.
2017, pp. 1036–1039 (cit. on p. 7).

[18] Everton Santana, Saulo Mastelini, et al. «Deep regressor stacking for air
ticket prices prediction». In: Anais do XIII simpósio brasileiro de sistemas de
informação. SBC. 2017, pp. 25–31 (cit. on p. 7).

[19] Stacey Mumbower and Laurie A Garrow. «Data Set—Online Pricing Data for
Multiple US Carriers». In: Manufacturing & Service Operations Management
16.2 (2014), pp. 198–203 (cit. on p. 7).

[20] Mian Dai, Qihong Liu, and Konstantinos Serfes. «Is the effect of competition
on price dispersion nonmonotonic? Evidence from the US airline industry».
In: Review of Economics and Statistics 96.1 (2014), pp. 161–170 (cit. on p. 8).

[21] Krishna Rama-Murthy. «Modeling of United States Airline Fares–Using the
Official Airline Guide (OAG) and Airline Origin and Destination Survey
(DB1B)». PhD thesis. Virginia Tech, 2006 (cit. on p. 8).

[22] Evelyn Fix and Joseph Lawson Hodges. «Discriminatory analysis. Nonpara-
metric discrimination: Consistency properties». In: International Statistical
Review/Revue Internationale de Statistique 57.3 (1989), pp. 238–247 (cit. on
p. 15).

65

BIBLIOGRAPHY

[23] Naomi S Altman. «An introduction to kernel and nearest-neighbor nonpara-
metric regression». In: The American Statistician 46.3 (1992), pp. 175–185
(cit. on p. 15).

[24] S Madeh Piryonesi and Tamer E El-Diraby. «Role of data analytics in
infrastructure asset management: Overcoming data size and quality problems».
In: Journal of Transportation Engineering, Part B: Pavements 146.2 (2020),
p. 04020022 (cit. on p. 16).

[25] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and predic-
tion. Vol. 2. Springer, 2009 (cit. on p. 16).

[26] Xin Yao. «Evolving artificial neural networks». In: Proceedings of the IEEE
87.9 (1999), pp. 1423–1447 (cit. on p. 40).

[27] Shifei Ding, Chunyang Su, and Junzhao Yu. «An optimizing BP neural
network algorithm based on genetic algorithm». In: Artificial intelligence
review 36.2 (2011), pp. 153–162 (cit. on p. 40).

[28] Zhi Xiao, Shi-Jie Ye, Bo Zhong, and Cai-Xin Sun. «BP neural network
with rough set for short term load forecasting». In: Expert Systems with
Applications 36.1 (2009), pp. 273–279 (cit. on p. 40).

[29] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. «Layer normaliza-
tion». In: arXiv preprint arXiv:1607.06450 (2016) (cit. on p. 46).

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 46).

[31] Robert Gilmore Pontius, Olufunmilayo Thontteh, and Hao Chen. «Compo-
nents of information for multiple resolution comparison between maps that
share a real variable». In: Environmental and ecological statistics 15.2 (2008),
pp. 111–142 (cit. on p. 56).

[32] Cort J Willmott and Kenji Matsuura. «On the use of dimensioned measures of
error to evaluate the performance of spatial interpolators». In: International
Journal of Geographical Information Science 20.1 (2006), pp. 89–102 (cit. on
p. 56).

66

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Related Work
	Methods
	Machine Learning for Regression
	Ridge Regression
	Lasso Regression
	K-Nearest Neighbors
	Support Vector Regression
	XGBoost
	Decision Tree
	Random Forest Regression

	Deep Neural Network
	Fully Connected Neural Network
	Convolutional Neural Network
	Transformer
	Beyesian Neural Network

	Experiments
	Dataset
	Flight Price Dataset
	Preprocessing

	Evaluation Metrics
	Root mean square error
	Mean absolute error
	Mean absolute percentage error
	Coefficient of determination R2

	Implementation Details
	Experimental Results
	Comparison of different methods
	Ablation studies
	Running time comparisons

	Conclusions

